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Preface

In 2004, the National Academies of Sciences, Engineering, and Medi-
cine held a workshop on Technology for Adaptive Aging. Since that meet-
ing, technology has evolved dramatically; in particular, mobile technologies 
have become more pervasive in U.S. society and a mainstream part of 
most peoples’ lives. Such changes provide new opportunities for research 
on technology and aging. The National Academies Board on Behavioral, 
Cognitive, and Sensory Sciences was contracted by the National Institute on 
Aging (NIA) to convene a workshop in December 2019 to review research 
on mobile technologies and aging, and to highlight promising avenues for 
further research through a discussion about and compilation of six com-
missioned papers focused around mobile technology and adaptive aging. 
In particular, the NIA was interested in how mobile technologies could be 
used to support people in their everyday lives to help them live successful 
lives as they aged. A committee was appointed by the National Academies 
in April 2019. 

WORKSHOP PLANNING

Committee members first met in May 2019 with representatives from 
the National Academies and the National Institute on Aging to learn of 
the specific format and guidelines for the workshop, as well as specific 
NIA interest areas. A list of six topic areas for the workshop that were of 
interest to the NIA was produced at this meeting. The committee selected 
the authors for six commissioned papers to be presented at the workshop 
in December. 

http://www.nap.edu/25878
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THE WORKSHOP

The workshop was held on December 11 and 12, 2019 (see Appen-
dix A for the workshop agenda). The primary objective of this meeting was 
to engage in meaningful discussions about how mobile technology can be 
employed to enhance the lives of older adults. An author from each of the 
six teams presented an overview of his or her commissioned paper, with 
discussion after each presentation. The workshop also included a panel of 
industry experts. The industry experts gave short overviews of their orga-
nizations and use of mobile technologies to advance aging, again followed 
by discussion. The committee intended that the workshop presentations and 
discussion, and the subsequent publication of the commissioned papers, 
would generate ideas for future research that could help NIA set an agenda 
in this area of study. This volume is the collection of the papers.

In the workshop’s first presentation, Jessica Vitak stressed that privacy, 
security, and trust must be taken into account when designing studies that 
use mobile technologies, and also when analyzing data that are collected 
from various mobile devices. She noted the importance of digital literacy for 
study participants as well as researchers. Vitak also emphasized the chal-
lenges of using mobile devices in research, and the importance of finding 
ways to successfully navigate issues associated with mobile devices. 

Karen Fingerman discussed the potential that information and com-
munication technologies (ICTs) have to foster or support social relations 
among older adults. She emphasized the importance of social relations for 
survival, noting that both those who are isolated and those who are lonely 
have greater mortality. Fingerman reviewed various studies showing the 
beneficial effects of ICTs on social relations for older adults, and also noted 
research showing that technology does not necessarily substitute for in-
person human social ties. Fingerman suggested one possible path forward 
is to focus efforts on individuals who do not use ICTs. She observed that 
another key question is whether ICTs should be used to complement exist-
ing ties or to help generate new ties for older adults. Another line of inquiry 
in this area indicated by Fingerman is access and design; she observed that 
ICTs can be very frustrating for individuals with cognitive impairment. 

Diane Cook discussed ways in which sensor technology might pro-
mote aging in place, but also identified a range of opportunities to expand 
research using data gathered via sensors. These include enhancing diver-
sity in samples; developing new and innovative technologies that adapt 
as people change; scaling up findings from smaller projects to see if they 
are reproducible in different and larger groups, and if impacts persist 
over time; decreasing costs of new technologies; and determining whether 
people continue to use devices after the research period ends. Cook also 
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discussed related challenges, such as identifying behavioral markers from 
raw sensor data, protecting user privacy, and ensuring that the technology 
is accessible to users.

Neil Charness focused on use and limitations of mobile technologies 
for interventions. One of the key issues Charness raised was the need for 
mobile monitoring systems to be tailored to participants in order to be suc-
cessful. To advance research in this area, Charness suggests possible paths 
forward: avoiding small and unrepresentative older adult samples; ensuring 
adequate control groups to demonstrate efficacy; and including long-term 
assessment. Achieving these, however, will necessitate long-term funding 
for large, multisite studies. He also noted the need for better partnerships 
between academic researchers and industry to enhance usability, scalability, 
and deployment of mobile monitoring systems. 

Elizabeth Murnane presented an overview of her commissioned paper 
that surveyed ways to gather data with sensors and mobile technologies. 
Murnane highlighted the importance of ensuring usability of devices among 
older adults. She noted that this includes interface elements (e.g., large 
touch targets, fonts, and screen sizes, as well as high contrast, simple inter
faces, low manipulability, and enhanced and adaptive volume control) 
and interaction modalities that are more intuitive and natural. Minimizing 
information overload and delivering cognitively legible feedback are also 
important when using sensors and mobile technologies to attempt to change 
behavior. Murnane also noted the need for more common-format, inter
operability, and reusable mHealth platforms. 

In his presentation, Alvin Rajkomar noted that it is possible to use sen-
sors to collect data from a lot of people, and while there is great potential 
in this volume, a variety of challenges affect generalizability of the studies 
being done. In addition, other types of data are typically needed besides sen-
sor data in order to make predictions. Unless data are collected from vari-
ous sources (types of sensors, groups, and places), there may be selection 
biases present, which could bias the machine-learning outcomes. However, 
he made the point that humans are equally or perhaps more biased than 
artificial intelligence. 

We would like to acknowledge the contributions of those who were 
invited to participate in the industry panel, including Scott Moody, 
K4Connect; Jim Harper, SondeHealth; and Kyle Rakow, AARP. The 
National Academies staff facilitated all aspects of the committee’s work. 
Special thanks go to Molly Checksfield, the study director, who facili-
tated the work prior, during, and after the workshop. She took over from 
Sujeeta Bhatt, who staffed the effort until September 2019. Jacqueline 
Cole handled the logistics for the committee and its invited guests at vari-
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ous stages of the project. Barbara Wanchisen, BBCSS board director, and 
Adrienne Stith Butler, associate board director, provided guidance to the 
committee throughout its work. 

Shelia Cotten, Chair
Steering Committee for the Workshop on 
Mobile Technology for Adaptive Aging
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1

Trust, Privacy and Security, and 
Accessibility Considerations  

When Conducting Mobile Technologies 
Research With Older Adults

Jessica Vitak and Katie Shilton1

INTRODUCTION AND OVERVIEW

Information and communication technologies (ICTs)—including smart-
phones, tablets, and other mobile devices—provide a number of important 
social, emotional, and tangible resources to older adults. Aging is associ-
ated with increased social isolation and a subsequent decline in emotional 
well-being; ICTs may provide a social lifeline to those living in retirement 
communities or far from family (e.g., Brewer and Jones, 2015; Cotten et 
al., 2017; Gatto and Tak, 2008). ICTs can help older adults become more 
cognitively engaged through games, information seeking, and other activi-
ties (Koo and Vizer, 2019; Lu et al., 2017). As physical health and mobility 
decline, use of mobile devices provides older adults with more freedom by 
removing the geographical constraints associated with many normal activi-
ties, including grocery shopping, banking, and accessing medical records 
(Kötteritzsch and Weyers, 2016; Winstead et al., 2013). Finally, mobile 
devices can help caregivers and medical staff provide better care through 
monitoring and data collection (Kang et al., 2010; Kuerbis et al., 2017).

While older adults generally lag behind the general population in 
adopting new technologies, they represent an increasingly large propor-
tion of users. In 2019, 91 percent of American adults age 65+ owned a 
mobile phone and 53 percent owned a smartphone (Pew Internet, 2019). 
Companies are increasingly designing and marketing mobile technologies 

1 College of Information Studies, University of Maryland, College Park. Address correspon-
dence to: jvitak@umd.edu and kshilton@umd.edu.

1
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2	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

toward older adults to help them age in place, stay connected with family 
and friends, and maintain a sense of independence. Likewise, existing tech-
nologies like wearables (e.g., fitness trackers) and personal digital assistants 
(e.g., Amazon Echo, Google Home) can be particularly helpful to older 
adults as they seek to maintain their health and live on their own (e.g., 
Nath et al., 2018). 

Mobile technologies also provide researchers with a wide range of tools 
and methods for doing research with older adults. Sensors, mobile apps, 
digital assistants, and other technologies can collect passive and active data 
from users to improve care, provide assistance, and enhance their quality of 
life, and researchers have used such technologies to develop mobile health 
interventions for a wide range of physical and emotional health outcomes 
(Joe and Demiris, 2013). These devices can also help offset problems of 
accuracy and recall in data collection by providing “just-in-time” data 
collection through text messages, apps, and other mobile tools (Heron and 
Smyth, 2010).

At the same time, the use of mobile technologies by older adults intro-
duces challenging privacy and security risks. The privacy and security of 
mobile data are complex topics. Mobile devices gather a broad spectrum 
of data about their users, ranging from in-application activity to com-
munications to movement and location data generated by sensors in the 
phone, and those data are collected in ways that are not always clear to 
end users. For example, many applications on smartphones—including 
GPS/navigation, ride services, and fitness tracking—require location data 
to function, and many consumers will therefore opt-in to (or decline to 
opt-out of) widespread location tracking by their device. Location data 
can provide an exact accounting of where a person is located at any given 
time and are generally considered highly sensitive (Boshell, 2019). Beyond 
location data, people use their phones to generate and share sensitive data, 
including emails, text messages, and financial transactions, which could 
pose privacy and security risks.

Furthermore, the sensitive data generated by mobile devices are shared 
with a wider ecosystem that includes device manufacturers, telecommu-
nication companies, and application companies, as well as third-party 
data brokers (Shilton, 2009). Although recent legislation in Europe and 
California provides individuals specific rights over their data, understanding 
those access and control rights is challenging—and which companies and 
researchers must adhere to the new regulations is still being fought over in 
the courts. And while application developers frequently give users choices 
about the privacy and security of their data, these choices can be cognitively 
and logistically difficult to navigate (Kelley et al., 2012; Madden, 2012). 

Researchers collecting and/or analyzing data from mobile devices, par-
ticularly those working with older adults, must account for a wide range 
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of physical and cognitive abilities and tailor study design and participant 
protections to account for that variance. As Farage and colleagues (2012) 
note, designing for older adults should focus on simplicity, flexibility, and 
ease of use. In the case of mobile devices, this means considering how the 
size of the device and any text-based displays may create additional barriers 
to adoption and use and offering multiple formats for presenting and col-
lecting data. Second, older adults are frequently less experienced users of 
mobile and digital technologies, and experience with these technologies is 
correlated with both trust in the systems as well as understanding of the pri-
vacy and security risks. Research suggests that older adults are more likely 
to experience fear or distrust of technology (Knowles and Hanson, 2018); 
this may lead to a lack of engagement or nonparticipation from some older 
adults (Waycott et al., 2016). Other research suggests older adults may 
engage in impression-management strategies during the research process 
to counter stereotypes about older adults’ knowledge of technology or to 
provide socially desirable responses (Franz et al., 2018). 

Because of the general risks to privacy and security from mobile devices, 
the specialized risks of research using mobile data streams, and the particu-
lar challenges of doing research with older adults, researchers at this inter-
section have an obligation to carefully consider their study design, paying 
particular attention to data collection, analysis, sharing, and storage poli-
cies. The relationship between these challenges is highlighted in Figure 1-1.

To guide this process of recognizing and responding to the specific chal-
lenges of conducting mobile device research with older adults, this chapter 
first reviews general privacy and security risks in the mobile data ecosystem. 
It then narrows its scope to the ways those general risks intersect with re-
search among older adults, and maps best practices throughout the research 
life cycle to address these barriers. The paper also discusses the benefits and 
barriers to academic–corporate research partnerships in this space.

PRIVACY AND SECURITY CHALLENGES 
IN THE MOBILE ECOSYSTEM

The unique privacy and security challenges of the mobile ecosystem 
have been extensively detailed in previous work (Boyles et al., 2012; 
Christin et al., 2011; Decker, 2008; Future of Privacy Forum, 2012; Greene 
and Shilton, 2017; Harris, 2013), and researchers should be aware of these 
challenges before asking older adults to engage in mobile device research.

First, mobile devices collect extremely intimate data, making them very 
useful for research but challenging for privacy and security. Data collected 
from mobile devices might document who a user contacts via voice or text, 
how frequently, and the content of those messages; a variety of leisure 
activities ranging from shopping to games to reading; and the location of a 
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TRUST, PRIVACY AND SECURITY, AND ACCESSIBILITY CONSIDERATIONS 	 5

user’s home and work, as well as any other stops they make along the way. 
Mobile phones and wearables can intuit sleep and wake times, document 
searches for symptoms or concerns, and record social media activity. In 
most cases, the data are synced with external servers automatically, requir-
ing no input from the user; while this improves user experience, people may 
easily forget—or not realize—the digital traces they share with companies 
throughout each day.

Next, both privacy and security of mobile data are complicated by the 
sheer number of data stakeholders in the mobile ecosystem. Application 
developers—who might range from individuals to academic researchers to 
huge corporations—make choices about what data to collect, how long 
to keep them, and how well to secure them. They may also decide to mon-
etize user data by selling them to third-party data brokers or advertising 
companies. These decisions are subject to soft regulation from application 
marketplaces (Greene and Shilton, 2017), which generally require that 
users be notified of—and consent to—data collection (a minimum bar for 
privacy). Similar data may also be collected by device manufacturers and 
telecommunications companies in addition to application developers. While 
consumers in Europe and California have increasing rights to both the vis-
ibility of their data and restrictions on their sharing—and the U.S. Congress 
has been debating new privacy legislation throughout 2019—these laws are 
quite new (and in the case of U.S. federal legislation, still in draft form), 
and enforcing compliance will remain an ongoing hurdle for the foresee-
able future. 

Until consumer legislation is strengthened, enforced, and universally 
applied, researchers should be aware that asking older adults to increase 
data collection on mobile devices may put data in the hands of unknown 
third parties, ranging from telecommunications companies to shadowy data 
brokers. Careful mobile application design can mitigate some, but not all, 
of these concerns. See work by the Center for Democracy and Technology 
(2011) and the Future of Privacy Forum (2012) for detailed recommenda-
tions on creating privacy policies and disclosures, ensuring accessibility 
of content, notifying end users about changes in data collection practices, 
sharing data with outside parties, and more.

Challenges for Mobile Data Research with Older Adults

U.S. researchers doing mobile device research with older adults have an 
obligation to fully inform participants of the implications of research par-
ticipation, protect participants from the risks of participation, and ensure 
equitable access to research (Federal Register, 2017). Similar obligations 
apply to researchers in Canada, the UK, Australia, and the EU. However, 
characteristics of the research population intersect with the general chal-
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6	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

lenges of mobile privacy and mobile device use in ways that particularly 
challenge informed consent, risk, and equity. 

Privacy is frequently defined in both legal and commercial sectors as 
individual control over personal data (Solove, 2010). However, empiri-
cal and legal research increasingly challenges this definition (Nissenbaum, 
2009; Martin and Nissenbaum, 2016). This research emphasizes privacy 
as the appropriate use of data within a given social or societal context, 
where appropriateness is governed by established values and social norms 
of a context. 

We argue that avoiding a definition of privacy focused on individual 
control over data is particularly important for mobile data research with 
older adults. Ensuring privacy by asking participants to make complex deci-
sions about the uses of their data introduces high cognitive and logistical 
overhead to a project and places the burden for privacy protection on par-
ticipants rather than researchers. This is inappropriate for any research but 
particularly for research with older adults. Because older adults are frequently 
less experienced users of mobile devices, they may have incomplete mental 
models of what mobile data can be used to infer, who might access that infor-
mation, and what the real risks of engaging in mobile data research might be. 

According to a national study of American adults by Pew Internet 
(Auxier et al., 2019), the majority of Americans report having little to no 
knowledge about what companies or the government do with data they col-
lect; furthermore, Americans generally feel they lack control over who can 
collect personal data. Compared to younger adults, older Americans report 
feeling less in control over their location data, search terms, online pur-
chases, browsing behaviors, text messages, and social media posts (Auxier 
et al., 2019). At the same time, older adults are much less likely to believe 
their online and mobile activities are tracked than younger adults, which 
may lead them to make less-informed decisions about sharing personal data 
(Auxier et al., 2019). 

These challenges of experience and understanding may impact older 
adults’ trust in the research process and willingness to participate. In addi
tion, age-related cognitive and physical decline may impact both the ac-
cessibility of research projects for participation and participants’ ability to 
meaningfully consent to complex, granular data collection. The following 
sections discuss challenges to informed consent and trust, privacy and secu-
rity risks, and accessibility and bias, and suggest best practices to mitigate 
concerns in each area. 

Addressing Challenges to Informed Consent and Trust

Trust is a critical component in any research setting, but it becomes 
even more important in situations where there may be knowledge or power 
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gaps, such as when one is conducting technology-based research with older 
adults. For example, Serrano and colleagues (2016) looked at the use of 
mobile devices for collecting health data and found that older adults were 
less willing to share data through mobile devices; more broadly, study par-
ticipants were less willing to share sensitive health data over mobile devices 
compared to nondigital methods. Research also indicates that distrust in 
big data research is an even larger issue among marginalized communities; 
in a large study in the United States, Madden et al. (2017) found that older 
Americans with lower levels of income and education expressed greater 
concerns about information (and physical) privacy and security. Similarly, 
communities already targeted for increased surveillance (e.g., foreign-born 
Latinxs in the U.S.) recognize that participation in pervasive tracking could 
put them at greater risk.

A careful informed consent process is critical to building trust with 
mobile research participants. With improvements in mobile data collection 
and analysis techniques, researchers and ethics review boards are debating 
best practices for obtaining informed consent (see, for example, Vitak et 
al., 2016, 2017). In the U.S., new guidance from the Office for Human 
Research Protections emphasizes the allowability of electronic consents 
(eConsent) but has specified that it may not be appropriate for populations 
who “have difficulty navigating or using electronic systems because of, for 
example, a lack of familiarity with electronic systems, poor eyesight, or 
impaired motor skills.” (U.S. Department of Health and Human Services 
et al., 2016, p. 4). Informed consent—whether paper based or electroni-
cally mediated—is further complicated because a large amount of data is 
being collected in the background by sensors, mobile phones, and applica-
tion programming interfaces. This raises questions about both breadth and 
duration of data being collected, as well as whether participants can fully 
understand the inferences that can be made from granular data, and the re-
sultant risks such data pose. While popular press accounts (e.g., Valentino-
DeVries et al., 2018) are gradually educating consumers about the risks of 
device use and data collection, older adults with less technology experience 
may still find such inferences surprising.

An additional challenge is determining when informed consent to exist-
ing data use is needed at all. Studies that scrape content from social media 
platforms or online communities, or those that use data already collected 
by commercial mobile applications, raise questions about whether sec-
ondary consent for research is needed. Research by Vitak and colleagues 
(2016, 2017) highlights disagreements among the research community over 
whether informed consent for such projects is feasible, as well as variations 
in how institutional review boards in the U.S. evaluate research using large 
datasets. 
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Best Practices for Obtaining Meaningful Informed Consent

Guaranteeing meaningful informed consent for older adults is not a 
simple matter. The first challenge is to maximize older participants’ compre-
hension of the study’s procedure, risks, and benefits. Research with adults 
has shown that comprehension of standard informed consent processes is 
frequently low (Nishimura et al., 2013), and older adults are less likely to 
fully understand data collection practices involving mobile devices (Choi 
and DiNitto, 2013; Schreurs et al., 2017). Overly technical descriptions 
of data collection and analysis procedures are especially problematic for 
older adults because research has consistently shown that they lag behind 
the general population in digital literacy and skills and may lack the sup-
port network to assist them in developing those skills (e.g., Schreurs et al., 
2017; Wagner et al., 2010). 

There are several options for maximizing comprehension during the 
informed consent process of any study. In order to ensure that participa-
tion includes older adults with cognitive impairments, researchers should 
develop study materials to allow proxies to assist participants in completing 
the study, interact with participants across multiple sessions, and provide 
clear benefits for participation (Bonnie, 1997). When possible, consent 
should be conducted in person, and the document should be readable—
both in document design and complexity of text. Relying on mobile consent 
procedures introduces additional risks that older adults may not be able to 
easily navigate documents or read and comprehend materials and should be 
avoided. Researchers might consider providing examples of the data they 
are collecting and clearly listing the sorts of inferences they plan to draw. 
Researchers should also consider analogies that can help inexperienced 
mobile device users to build better mental models of how the devices collect 
data and what the data can reveal about participants. Offering alternate 
versions of the consent document, including audio and/or video versions 
of the consent information, may be useful for participants with vision or 
other disabilities.

In addition to having formal consent documentation, researchers may 
want to create a second document that provides a straightforward list 
of risks and benefits to participation, as well as options for discontinu-
ing participation or having their data removed from the dataset. Even if 
content is written at an appropriate reading level, older adults may need 
additional time to read through study materials and may have questions 
for researchers (Alt-White, 1995). In some cases, researchers should care-
fully consider whether a potential participant has the cognitive capacity 
to make decisions regarding participation (Kim et al., 2001); in cases 
where a proxy is used, researchers should still try to obtain assent from 
the participant.
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Best Practices for Building Trust with Research Participants 

There are several ways to build trust in mobile data research beyond 
the informed consent process. First, we encourage investigators to reflect 
on questions of data ownership. Data ownership is a complex legal and 
social issue. Currently, technology users have little legal ownership over 
data produced by platforms and technologies due to terms of service con-
tracts that give ownership to companies; we advocate a different model 
for researchers. Researchers should consider writing consent documents 
so that older adults understand themselves to be the primary guardians of 
their data. For older adults who may struggle to feel empowered in their 
technology use, framing their data as an asset they control and contribute 
can increase their sense of ownership in the research.

Researchers can also improve the trust of older participants in their 
project by focusing on the utility of mobile research for this demographic. 
Research shows that older adults may perceive newer technologies as 
unnecessary and are less likely to take the effort to learn about them (Lee 
and Coughlin, 2015; Turner et al., 2007). By engaging participants in dis-
cussions of why mobile devices are a uniquely useful and effective research 
tool, researchers can build participant trust and engagement in the process.

Next, we suggest investigators think of consent for older adults as an 
ongoing informational process, rather than a single occurrence. Because 
older adults may struggle with incomplete mental models of how data are 
collected, stored, and analyzed, researchers should look for ways to make 
sure that participants understand (1) data flows and (2) research process 
and goals throughout the study. This might include the use of large icons 
or pop-up reminders on the mobile device interface to indicate ongoing 
data tracking; providing a dashboard for participants to view some or all 
of their collected data; or providing regular project communications and 
updates tailored to the research population. In one example of this, Barron 
and colleagues (2004) describe testing a smartphone app that encouraged 
physical activity; in their study, they ran three rounds of data collection, 
making adjustments to the app’s interface after each round of data collec-
tion based on feedback from older adult participants. Researchers should 
also consider ways to give older participants control over data collection, 
including the ability to turn collection on and off, or to delete data before 
sharing it with researchers.

We also encourage investigators to consider more participatory forms 
of research. Citizen science techniques for engaging participants throughout 
the research process can include opportunities to co-design activities for 
data collection apps, focus groups to engage participants in setting research 
goals and developing research questions, and opportunities for individuals 
to analyze their own data and see their data compared to those of others in 
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the study (Pandya, 2012). These techniques are particularly effective with 
older populations, who may have more time available to participate in co-
research activities, and who can particularly benefit from the technology 
literacy such engagement sessions can provide. 

Finally, researchers can build trust with participant populations by 
behaving in a trustworthy manner with participants’ data. We suggest 
adhering to privacy by design as a project goal. Privacy by design is an 
orientation toward research and technology development that emphasizes 
privacy as built into every element of a technology or protocol (Cavoukian, 
2012). Ensuring that privacy is embedded into study design and any tech-
nologies developed for the study is a multistep process, which we describe 
in more detail in the next section.

Addressing Privacy and Security Risks in Mobile Research with Older Adults

Practicing data privacy and security by design in mobile data research 
with older adults involves attention to protecting participants’ data at each 
stage of the data life cycle: collection, storage, analysis, and deletion. We 
encourage researchers to craft a data management plan (Michener, 2015) to 
proactively spot privacy and security issues in their own projects and make 
plans to counter the issues. A data management plan for managing the data 
of older adults will likely not vary greatly from those for other adults; the 
technical means of securing sensitive data are similar across populations. 
However, because of the differences in expertise between researchers and 
older adults discussed earlier, researchers using mobile data about older 
adults have an increased duty of care for participant privacy and security. 

Two major issues to consider during data collection are data minimiza-
tion and dealing with personally identifiable information (PII). Data mini-
mization is collecting only what is needed to answer the project’s research 
questions. A key strategy for minimizing data collection is careful reflection 
on meaningful indicators. For example, is collecting a participant’s location 
needed for an exercise-monitoring project if accelerometer data are col-
lected? Collecting the bare minimum of data needed to satisfy a project’s 
research questions minimizes the amount of data that could be exposed 
in a leak, used for reidentification, or shared by third parties. Research-
ers should also consider performing data processing on the mobile device 
when possible, sending only aggregated data or models to project servers. 
For example, instead of collecting all location data from older adults, 
researchers might consider using the mobile device to process GPS read-
ings into “time at home” and “time away from home” and keeping only 
those aggregate characteristics while discarding the GPS trace. Collecting 
and sharing a minimal set of data can reassure older adults who may treat 
expansive data collection with suspicion or confusion.
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Next, reflect upon what data a project will collect that could be consid-
ered PII. In a world of big data and linkable datasets, “personally identifi-
able” has become a broader term than names or Social Security numbers. 
For example, individuals might be identifiable through their location traces, 
particularly those who spend large amounts of time at an identifiable 
home or institutional address. Individuals may also be identifiable through 
aggregation of several data types; for example, Sweeney (2000) showed that 
combining gender, birthday, and zip code is often enough to identify some-
one. Even deidentified data are subject to reidentification attacks when they 
are combined with publicly available datasets (Narayanan and Shmatikov, 
2008). Researchers should realize that few people—and especially older 
adults—fully realize the extent of reidentifiability of mobile data. Even if 
investigators have taken pains to minimize the amount of PII collected, they 
should not rely upon deidentification of mobile data as the main privacy 
or security safeguard, and they should not make inflated promises of con-
fidentiality or anonymity to project participants. 

Considerations for data storage can impact the data’s security. Best 
practices for all populations, but particularly vulnerable populations such 
as older adults, include encrypting data in storage on both devices and 
project servers, and limiting researcher access to those data. Projects should 
also consider access restrictions and storage protections for the application 
on participants’ mobile devices. Storage protections, such as passwords 
or lock codes on mobile devices, have tradeoffs for research among older 
adults. Secure passwords become more difficult to use as memory declines 
with age (Kowtko, 2014). Likewise, biometric identifiers, such as finger-
print unlocking available on smartphones, are easy to use but may have 
higher rates of failure among older adults (Kowtko, 2014). A recent study 
found pattern-based authentication techniques to be most usable among 
older adults (Grindrod et al., 2018).

Privacy measures can also be taken during data analysis. Most re-
searchers already take steps to protect individuals in a dataset, commonly 
by reporting results in the aggregate. With the increased push by federal 
agencies and others to share data more widely—which supports a number 
of important research goals around replication and advancing science—new 
challenges arise to protecting individuals within a dataset. Researchers 
have consistently shown that standard deidentification techniques, such as 
removing sensitive variables from a dataset, do not effectively prevent re-
identification of individuals (see Ohm, 2009, for a review). Furthermore, as 
more variables are removed from a given dataset, its utility decreases, mak-
ing this process a less-than-optimal solution for advancing research. The 
current state of the art in technical privacy solutions is known as differential 
privacy, a technique that “ensures that the removal or addition of a single 
database item does not (substantially) affect the outcome of any analysis” 
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(Dwork, 2011). Differential privacy is especially useful for protecting data
sets that will be shared more widely because it allows for robust analyses 
without putting individuals at risk of reidentification. See Cheruvu (2018) 
for a high-level overview of how differential privacy works. 

Finally, researchers should plan for how data will be deleted at the end 
of a study. This includes managing deletion of data stored on participants’ 
devices as well as any data on servers or in the cloud. If complete deletion 
is difficult or impossible due to the number of intermediaries who have 
stored the data, this limitation should be clearly specified to participants 
during the consent process. Researchers should also consider whether they 
will allow participants to actively delete data (or request data deletion) 
during the study itself. Older adults may need particular guidance on user 
interfaces for deleting data or requesting data deletion.

Addressing Challenges of Bias in Research With Older Adults

For researchers using mobile devices and mobile data collection, con-
cerns extend beyond the privacy and security risks of mobile data. Study 
design reliant on mobile technology may also introduce issues of accessibility 
and bias. In this section, we discuss challenges to accessibility and bias in 
studies with older adults and mobile technologies. 

It is important that researchers carefully evaluate their study design and 
materials for biases and stereotyping. When studying technology adoption 
and use, stereotypes abound regarding older adults’ aptitude for, use of, and 
attitudes toward ICTs. Wandke and colleagues (2012) identified six myths 
regarding older adults and technology use, including the belief that older 
adults are not interested in using ICTs and view them as useless, as well as 
the belief that older adults lack the physical and cognitive capabilities to 
use ICTs. These types of assumptions could negatively bias sampling (e.g., 
avoiding adults 80+ or in nursing homes), protocol materials (e.g., not 
asking participants about certain technologies, not having them directly 
interact with ICTs), or interpretation of findings (e.g., making generaliza-
tions about all older adults). 

It is also important for the study design to minimize any effect that 
stereotypes held by older adults regarding ICTs may have on their participa-
tion. Older adults may be hesitant to use mobile technologies because of a 
lack of experience or negative past experiences (see, for example, Comunello 
et al., 2017). Both attitudes may negatively affect older adults’ willingness to 
participate in research on mobile devices as well as how they interact with 
technologies, so researchers should consider ways of framing their study 
and any artifacts that might be used in the study to address these attitudes.

Finally, for researchers using existing data by partnering with mobile 
companies or platforms, considerations of the representation of older adults 
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in mobile datasets is an issue. Though the penetration of mobile devices 
among older individuals is increasing, just over half of U.S. adults 65 and 
older owned a smartphone in 2019 (Pew Internet, 2019). Almost half of all 
seniors in the U.S. would be left out of many existing datasets, and those 
left out of the data may also be marginalized in other ways. 

BEYOND DATA COLLECTION:  
CONSIDERATIONS FOR ACADEMIC–CORPORATE PARTNERSHIPS

As noted earlier, numerous companies are involved directly or indirectly 
in developing hardware, software, and other mobile tools for older adults, 
and the rich data these tools collect could advance our understanding of 
older adults’ relationship with mobile technologies. Therefore, we encour-
age researchers and companies to focus on collaborations that enable aca-
demic researchers access to corporate data that would be difficult—if not 
impossible—to obtain otherwise. Partnerships with major companies like 
Apple, Google, and Microsoft could advance research on a wide range of 
health and wellness outcomes for older adults, improving quality of life 
both for those aging in place and for caregivers providing assistance as 
adults age.

That said, we acknowledge that there are significant barriers to 
researcher–industry collaborations that must be overcome, including cor-
porate concerns about intellectual property and academic concerns about 
data access restrictions. In the aftermath of controversies that blurred the 
lines between corporate and academic uses of data, from Facebook’s “emo-
tional contagion” study (Selinger and Hartzog, 2016) to the revelations of 
improper data usage by Cambridge Analytica (Confessore, 2018), compa-
nies may be cautious about partnering with external researchers. In addi-
tion, companies may hesitate to partner with external researchers because 
of concerns related to research output, particularly any output likely to be 
critical of the company itself. Because of this, many companies may only 
partner with academics they already trust and require corporate sign-off of 
any data analyses or written reports. 

In spite of these challenges, academic–corporate research partnerships 
are critical because of the quantity and quality of data; these companies 
have highly granular and longitudinal data that can be used to draw infer-
ences and improve a range of outcomes. Given that a large percentage of 
the mobile technologies older adults use are targeted directly or indirectly 
at health and well-being, researchers can use data from mobile apps, wear-
ables, and other devices to directly improve the health of and care for older 
adults. Furthermore, academic researchers can more narrowly focus on 
specific research questions and applications of the data that companies may 
have neither the time, energy, nor expertise to pursue. 
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The biggest hurdles to overcome in data sharing between companies 
and academics are ensuring the privacy and security of end-user data and 
meeting any legal requirements set out in the company’s terms of use. The 
recent breakdown of Facebook’s partnership with independent research 
commission Social Science One—a program that invited researchers to 
submit proposals to study misinformation and promised to share aggre-
gated data related to elections with funded researchers—highlights how 
challenging secure data sharing can be at scale (see Alba, 2019, for an 
overview). In response to concerns about Facebook releasing sensitive 
personal information of users, the company began applying differential 
privacy algorithms to the data to ensure usability and privacy; however, as 
of fall 2019, Facebook and Social Science One have not been able to meet 
these competing demands. Other research by the Future of Privacy Forum 
(2017) suggests that while there are signs that companies are more open 
to academic partnerships, as of now they are largely limited to a small set 
of elite institutions and researchers. Companies are more likely to support 
research proposals that support the company’s core mission, which may 
exclude important societal questions that fall outside of those goals.

Models for how corporate–academic partnerships can function do exist, 
and these could be used to guide future partnerships. Focusing on the role 
of mobile data in improving older adults’ health outcomes, we can look 
at Apple’s HealthKit and ResearchKit2 as examples of applications that 
encourage individuals to voluntarily share their data with researchers and 
thus provide a platform for researchers to securely access and analyze those 
data. HealthKit is a developer framework embedded in Apple’s mobile 
(iOS) and Watch (watchOS) operating systems that lets users share various 
types of data from the devices and third-party apps in an easy-to-read for-
mat through a dashboard. Individuals who want to participate in research 
studies can easily share their health data and can control the types of data 
they share. Apple’s ResearchKit allows medical researchers to collect and 
analyze detailed and granular data from their patients unobtrusively through 
iPhones. Other organizations and applications have provided similar access 
to researchers; for example, the online platform PatientsLikeMe has pro-
cedures for allowing academic researchers to request access to their data.3 

Recognizing that access to corporate data is difficult and may not be 
possible, nonprofits have begun to develop guidelines and frameworks to 
help researchers in their evaluation of mobile technologies. One example of 
this PsyberGuide,4 a nonprofit organization focused on improving mental 

2 For more information, see: https://developer.apple.com/healthkit/ and https://www.apple.
com/researchkit/.

3 For more information, see: https://www.patientslikeme.com/research/faq#qr3.
4 For more information, see: https://psyberguide.org.
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health outcomes; it says its goal is to “provide accurate and reliable infor-
mation free of preference, bias, or endorsement.” PsyberGuide evaluates 
mental health apps’ usability, credibility, and privacy practices and can help 
researchers make decisions about what mobile apps to use in their research. 
Other nonprofits like the Future of Privacy Forum can help researchers 
forge new relationships with companies and help companies navigate the 
privacy risks associated with data sharing.

CONCLUSION

Performing research with older adults using mobile technologies places 
researchers and participants at a nexus of complex ethical issues. General 
concerns about the privacy, security, and accessibility of the mobile data 
ecosystem are exacerbated by the duty of care researchers owe to partici-
pants and the complex challenges of aging. In this chapter, we have high-
lighted a number of issues researchers should consider when conducting 
research in this space. Our suggestions focus on ensuring accessibility and 
access for participants with a wide range of potential physical and cognitive 
limitations, reducing potential bias in research, and building trust through-
out the research process. We provide specific suggestions for protecting 
participant data during and after data collection and communicating pro-
cedures effectively to older adults throughout the process. We advocate for 
researchers to embrace “nontraditional” research methods, such as employ-
ing citizen science methods of data collection to both empower older adults 
and provide them with more control over their data. Finally, we encourage 
researchers to continue to develop relationships with companies and other 
organizations that can enable collection and analysis of richer datasets and 
provide more meaningful insights into the core research questions guiding 
this research community. 
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Mobile Monitoring and Intervention 
(MMI) Technology for Adaptive Aging

Neil Charness, Walter R. Boot, and Nicholas Gray1,2

INTRODUCTION AND OVERVIEW

Mobile monitoring and intervention (MMI) technology offers a promis-
ing way to provide interventions tailored to individuals and their current 
context. Ideally, the system would be capable of monitoring relevant aspects 
of physiology and behavior, making intelligent predictions about when and 
how to intervene, and then delivering timely interventions. This chapter 
outlines critical issues to consider for MMI, including whom to target, what 
measures to target, where to monitor and intervene, when to monitor and 
intervene, and how to monitor and intervene. We also discuss attitudinal 
barriers for aging adults and the challenge of promoting adherence to MMI 
systems. 

We review recent studies, most employing smartphones with small, un-
representative samples that include monitoring and prediction, though not 
intervention. Although there are many commercial apps for smartphones 
aimed at supporting health, they have unknown efficacy and generally are 
not well designed for aging adults, failing to consider changing needs for 
the young-old, middle-old, and old-old age groups. We find that MMI tech-
nology for aging adults is in its infancy, with few good examples showing 
efficacy or cost effectiveness. To move such technology toward maturity we 

1 Florida State University. Address correspondence to: Neil Charness, Psychology Depart-
ment, Florida State University, 1107 West Call Str., Tallahassee, FL 32308-0844; charness@
psy.fsu.edu.

2 This work was supported in part by NIH/NIA 4 P01 AG 017211, Center for Research and 
Education on Aging and Technology Enhancement (CREATE).
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suggest supporting studies that can enroll larger, more representative sam-
ples, and that can track system performance over an extended period (years) 
to assess efficacy for managing chronic conditions. Such studies might 
benefit from cooperation between federal agencies such as the National 
Institute on Aging (NIA) and the National Science Foundation (NSF) and 
might consider making use of existing longitudinal panels.

FRAMEWORKS FOR MONITORING AND INTERVENTION  
FOR ADAPTIVE AGING

Our aim is to provide frameworks and recommendations for research on 
MMI systems by relying on recent (2015+) studies and reviews that assess 
efficacy for promoting adaptive aging. We focus primarily on studies of aging 
adults. We define mobile technology as devices that are wearable (e.g., inter-
nally: cardiac pacemaker; externally: smartwatches) or portable (e.g., smart-
phones, tablets that can fit in clothing or in accessories such as purses). In 
this chapter, we first introduce a framework for identifying the challenges for 
deploying MMI systems, then discuss attitudinal constraints on adoption. We 
then discuss frameworks for MMI, focusing on measurement, prediction, and 
intervention. We evaluate existing mobile apps and how they might promote 
adherence for diverse aging populations. This chapter ends with a discussion 
of how the RE-AIM framework can guide the development of MMI systems 
and closes by outlining potential research priorities. 

Sensor-based monitoring technology, both fixed and mobile, offers 
advantages and disadvantages for intervening to promote improved well-
being for our aging population. Unlike early “one-size-fits-all” interven-
tions in behavioral clinical trials (e.g., Ball et al., 2002), sensor-guided 
interventions can generate tailored actions (e.g., Lustria et al., 2013). Usu-
ally fixed-location sensor systems (e.g., smart home sensor arrays) have 
the disadvantage that the user must be in a fixed location, though it is 
possible to envision blended fixed and wearable systems (Skubic et al., 
2014). A significant advantage of MMI is that the system can move with 
the person. A smartwatch monitoring movement can prompt an immobile 
wearer to move after a lengthy interval of sitting no matter where they are 
(home, senior center). A significant disadvantage for MMI is that users must 
continually wear or carry devices on their person and keep them charged 
(Reeder and David, 2016). 

Table 2-1 lists some of the challenges that arise when making the deci-
sion to deploy MMI technology. 

Some questions relate to the ethics of MMI—that is, whether (“why” 
and “what”) and under what circumstances (“where” and “when”) MMI 
might be initiated. The unit of analysis is important (“who”), usually taken 
to be the monitored person, such as an older adult living alone. But that 
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TABLE 2-1 Challenges in Mobile Monitoring and Intervention (MMI) Research and Practice 

Challenge Example Responses Constraints to Consider

Why
Monitor

Prevent harm, promote well-being Ethical, legal, self-
determination for lifestyle, 
societal resources

Whom to
Monitor

Aging adult Co-dependent dyads, caregiving 
teams

What to
Monitor

Physiological (e.g., blood pressure), 
psychological (e.g., cognition, well-being) 
indicators

Reactivity, lifestyle constraints

Where to
Monitor

Home, work, everywhere Privacy, legal

When to
Monitor

Continuous, intermittent intervals, self-chosen 
intervals

Privacy, data transmission 
bandwidth, storage, data 
security

How to
Monitor

Sensors, probe questions (e.g., ecological 
momentary assessment) for person, for proxy

Power source, device, person 
and network capability and 
availability/reliability and 
security

unit of analysis may miss the person–family and person–community con-
texts for MMI (see the chapter by Fingerman et al.), in line with the finding 
that caring for family members is a primary human social motivation (Ko et 
al., 2019). Limiting consideration to the older adult (and family) may also 
miss the issue of bystander capture: people being monitored who did not 
consent to being monitored.3 The methodology for monitoring (“how”) is 
dealt with in other chapters in this volume.

Underlying many of the questions is consideration of privacy: whether 
older adults wish to be monitored and if so, what aspects of their behavior/
physiology should be allowed, and how monitoring should occur. A 
population-representative survey of Americans found that older adult 
cohorts are more aware than younger cohorts about government monitor-
ing but are less likely to view as “very sensitive” contents of email, text mes-
sages, and health information, and equivalently less sensitive about their 
Social Security number (Madden, 2014). Older cohorts are also less likely 

3 An example from one of our monitoring studies (Evans et al., 2016) is a worker who came 
into a telehealth-equipped home that was monitoring a heart failure patient. He stepped on a 
wireless weight scale and triggered an alert because of the increased weight over the patient’s 
baseline.

http://www.nap.edu/25878


Mobile Technology for Adaptive Aging: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

24	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

than younger adults to take appropriate measures to protect their privacy 
online, such as asking to have information removed, or anonymizing post-
ings (Madden, 2014). A similar population-representative survey showed 
that older cohorts on Facebook are less likely to change their Facebook 
privacy settings: 33 percent of those age 65 and older have changed privacy 
settings compared to 64 percent of those age 18–29 years (Perrin, 2018). 
A year following entry into a study of unobtrusive monitoring (ISAAC), 
nondemented older adult volunteers and older adults with mild cognitive 
impairment (MCI) showed more concerns with privacy (concern that their 
information could be exploited) than at entry (Boise et al., 2013). However, 
72 percent of participants still showed acceptance of monitoring.

If everyone valued privacy more than any potential gains from moni-
toring, there would be no basis for developing systems that might provide 
other benefits, such as prolonging independence or preventing harm. A 
survey of a diverse sample of aging American adults (45 years and older), 
showed a willingness (particularly among those with disabilities) to trade 
off privacy in favor of maintaining independence even for rather intrusive 
monitoring options, such as cameras (Beach et al., 2009). Still, in terms 
of sharing information from monitored activities, participants indicated 
they were more willing to do this with family members and health care 
providers than with researchers and least willing for insurance companies 
or government. There appears to be some generalizability across popula-
tions. In a representative Swiss survey, 57 percent of those age 50 and older 
who tracked health data (28% of the sample) were willing to share data 
with researchers (Seifert, 2018). Such willingness to share data provides 
constraints on how MMI systems might be designed. 

In summary, privacy concerns need to be addressed to encourage aging 
adults to adopt and use MMI systems. Adoption of “Fair Information Prac-
tices” such as the eight principles in the OECD Privacy Framework (2013) is 
one approach. Another related approach is to provide people with granular 
control over release of captured information (Caine and Hanania, 2013).

Age and Technology Attitudes

Attitudes toward health monitoring technologies differ across age 
groups such that older adults tend to be more accepting than younger 
adults (Beach et al., 2009). Also, they tend to be primarily concerned about 
self-efficacy, or perceived ability to use the system (Lv et al., 2012). 

Although older age had been associated with greater openness to adop-
tion of health monitoring technology, when accounting for disability status, 
the effects of old age on openness are much smaller than those of disability 
status (Beach et al., 2009). If, therefore, the imminent threat of losing health 
or independence is one of the main motivating forces behind adoption of 
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health monitoring technology in old age, then preventive interventions for 
older adults may prove to be the most difficult to stage, as they would be 
met with the most hesitation. Without an obvious and apparent cause for 
concern, older adults may be reluctant to accept a new technology-based 
intervention, even though they remain at higher risk of health decline. 

A variety of technology adoption models and variants, such as the 
Technology Acceptance Model (TAM: Davis, 1989), Universal Theory and 
Acceptance and Use of Technology (UTAUT: Venkatesh, Thong, and Yu, 
2012), and the Senior Technology Acceptance Model (STAM: Chen and 
Chan, 2014), propose that adoption and use of technology depend on 
the trade-offs between benefits (e.g., perceived usefulness) and costs (e.g., 
perceived ease of use) as represented in such models (Charness and Boot, 
2009). With respect to predicting concerns and actions by people for secu-
rity and safety online, the protection motivation theory (Tsai et al., 2016) 
is also a useful framework. 

One recent technology adoption model relevant to MMI is the smart 
wearable acceptance model (Li et al., 2019), which incorporates additional 
factors such as compatibility with existing electronics, perceived stigma, 
device performance (e.g., reliability), and health status. Challenges for com-
patibility with existing electronics might arise, for example, when trying to 
switch a user from their preferred smartphone to one with a different oper-
ating system. Given that older adults learn at about half the rate of younger 
adults (Charness et al., 2001), asking them to learn a new operating system 
may result in poor enrollment in, and adherence to, an MMI system.

Intervention Framework

If we assume that older adults, who normatively have a variety of chronic 
conditions and impairments (Buttorff, Ruder, and Bauman, 2017), are willing 
to be monitored, and that systems can be devised that provide for adaptive 
interventions, what type of interventions are people likely to accept? One 
proposed hierarchy is “PRAS”—prevention, rehabilitation, augmentation, 
substitution—(Charness, 2019), which suggests that if prevention is insuf-
ficient and an impairment develops, people will prefer rehabilitation first, 
then augmentation to current capabilities (assistive devices, such as walkers, 
hearing aids), and lastly substitution (e.g., prosthetics that replace a failed 
function, such as pacemakers, cochlear implants). 

STATE OF THE SCIENCE FOR MEASUREMENT, PREDICTION, 
AND INTERVENTION USING MOBILE SYSTEMS

It is worth noting that any MMI system (a good example of a classical 
information processing system: Newell and Simon, 1972) will have multiple 
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components, including sensors, processors, algorithms to interpret sensor 
data, transceivers (transmitters and receivers), and data storage capabilities 
(see chapter by Cook). If intervention capabilities are built in, the system 
will have actuator components that can alert or communicate with the 
recipient (usually visual, auditory, and haptic output capabilities). A grow-
ing platform for monitoring health is the smartphone, which helped initi-
ate the field of mobile health, or mHealth (see chapter by Murnane and 
Choudhury). 

We did not locate any studies of MMI systems that incorporate the full 
chain of measurement, prediction, and just-in-time intervention for anyone, 
let alone older adults. A model system illustrating the full chain would be a 
cardiac pacemaker device. It monitors heart electrical activity, decides that 
it is irregular, and generates just-in-time pulses to regularize heartbeat). In 
the absence of studies looking at the full chain, we examine issues around 
each of the components, discussed next.

Measurement

Much of the literature concerning measurement capabilities of MMI 
technologies that we uncovered consists of feasibility pilot projects aimed 
at developing MMI technology systems. Many of these programs do not 
test such technologies with older adults, probably because of concerns with 
safety during simulated fall testing (studies that ask people to simulate 
the range of fall types) and for convenience of development (e.g., use of a 
student dormitory for Radio-frequency identification [RFID] tag testing). 
These problems can be seen in a recent review of wearable sensors and 
Internet of Things (IoT) monitoring for older adults (Baig et al., 2019). 
The review by Baig and colleagues indicates the range of target behaviors 
for measurement (the “what” question in Table 1). Those authors found 
14 studies (from 12 projects) between 2015 and 2019 that met inclusion 
criteria from an initial set of 327 studies. Seven had a focus on fall detec-
tion using wrist-worn devices or RFID tags. Others concerned monitor-
ing Activities of Daily Living (ADLs) using smartwatches, smartphones, 
and smart insoles. Other studies reviewed used smart home environments 
with passive sensors to monitor ADL and Instrumental Activities of Daily 
Living (IADL) activity. Lastly, geriatric depression and dementia detection 
(through classifying “forget” events with front door openings) were the 
goals of two of the studies.

Based on examining some of the studies in that review, we suggest that 
future measurement system development for MMI systems include older 
adults in both the development and testing phases, though this may prove 
problematic for fall simulation studies.
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Prediction

A largely untapped research area is prediction/inference using mobile 
technology for older adults. By fusing data across time from multiple 
sensors and including data from active monitoring components, such as 
ecological momentary assessment (EMA) surveys, inferences can be made 
about behavior patterns (Harari et al., 2016). 

By fusing data intelligently, systems can generate “mood sensors.” 
One study invited people to respond to EMA prompts about current mood 
(Sandstrom et al., 2017) and used phone sensors to determine where they 
were or directly queried their location with an EMA probe. That study 
relied on the general public (Android smartphone users) downloading an 
app (n = 12,310) and, given age-related technology adoption lag, enrolled 
a sample where at least 78 percent of those who reported a birth year were 
below the age of 45, a young to middle-aged sample.

More sophisticated inferences have been drawn through modeling, 
using various classifier algorithms and deep learning on data sets that 
contain large amounts of temporally tagged personal data in order to 
forecast depressive affect in young and middle-aged adults (Suhara, Xu, 
and Pentland, 2017) and loneliness in older adults (Sanchez et al., 2015). 
However, having to use a supervised machine learning procedure (see chap-
ter by Rajkomar) somewhat limits the scalability of the approach, because 
of the need to have a human in the loop to label/classify patterns. 

Intervention

Behavioral research studies we reviewed that use mobile device data 
typically do not intervene based on building up behavioral prediction 
models of study participants. Intervention is a logical next step. Perhaps 
because of lack of federal regulation, commercial enterprises have already 
entered the intervention space. Facebook experimentally manipulated mood 
for hundreds of thousands of its members by changing the information that 
a user saw in their news feed (Kramer, Guillory, and Hancock, 2014).

Nonetheless, once a model has been validated—for instance, that 
depressive affect has been detected and that it is predicted to worsen in 
a few days (e.g., Suhara et al., 2017)—it would make sense to provide 
referrals to professionals, or as research and technology advance, instanti-
ate validated interventions, particularly to head off conditions that are 
potentially life-threatening. One such example is a model that predicts 
that a suicide or homicide attempt is likely, and intervenes accordingly by 
providing immediate access to a therapist. Suicides show a sharp increase 
at older ages for men, and older cohorts have also experienced some of 
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the largest suicide increases between 1999 and 2017 (e.g., > 50% for age 
45–64; Hedegaard et al., 2018).

Another behavioral domain where prediction and intervention might 
be valuable for older adults is falls, given that about 29 percent of older 
adults reported experiencing a fall in the past year, and about 37 percent 
of those falls were serious enough to require medical treatment (Bergen, 
Stevens, and Burns, 2016). Balance and gait can be monitored and risk 
of falling assessed and detected (e.g., for fixed sensor systems: Rantz et 
al., 2015). If predicted risk rises above some threshold, the system could 
prompt the monitored person to seek help, or possibly, could provide vali-
dated rehabilitation exercises. 

Loneliness and social isolation might present another such domain for 
MMI. About 20 percent of adults in the U.S. (16% of those age 65 and 
older) and in the U.K. report significant loneliness (DiJulio et al., 2018), 
with death of a loved one and health problems given as the top two reasons 
for loneliness. If a trend that indicates significant loneliness is detected, 
interventions might be offered via a software suite that aims to improve 
social connectivity, such as in the PRISM clinical trial (Czaja et al., 2017). 

Another area for MMI is the management of chronic conditions. About 
81 percent of those age 65 and older have multiple chronic conditions 
(Buttorff et al., 2017). Total population prevalence was about 60 percent 
for one or more such conditions in the U.S. A study of heart failure (Evans 
et al., 2016) is an example of where smart monitoring (examining data to 
detect deviations from baseline for blood pressure, weight, heart-failure 
questionnaire items) was used to generate text messages to home health 
nurses who contacted participants. 

MMI might also provide help in managing medication schedules. The 
greater the number of chronic conditions, the greater the number of pre-
scriptions (Buttorff et al., 2017), possibly leading to complicated medica-
tion schedules, though medication adherence is sometimes better in older 
adults than middle-aged ones (Park et al., 1999). Monitoring (e.g., smart 
caps for bottled prescriptions) and intervention (prompts to the target 
person) can be used to help people with medication adherence problems 
to take medications as prescribed, with prompting more successful (d = .5) 
than not prompting (d = .2; Conn et al., 2016). 

Finally, supporting those with cognitive impairments due to normal 
aging and disease (e.g., mild cognitive impairment, dementia) may provide 
for greater independence and mitigate caregiver burden. If a significant 
trend of increasing cognitive impairment were detected through long-term 
individual monitoring, a prompt to seek professional care could be pro-
vided. Possibly, short-term interventions to assist people with dementia and 
their caregivers with everyday tasks could be organized by using Quality of 
Life Technology interventions such as virtual coaches (e.g., Schulz, 2012). 
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A recent study showed promise in using mobile monitoring to differentiate 
MCI and mild dementia from normal aging (Chen et al., 2019).

IS THERE AN APP FOR THAT? 

Google and Apple online stores feature hundreds of thousands of appli-
cations (apps) aimed at addressing nearly all aspects of health and disease, 
many with the goals of supporting MMI, including apps to help monitor 
and manage medication adherence, weight, nutrition, physical fitness, blood 
pressure, diabetes, sleep, and mood. Some apps track these activities and 
variables through self-report or sensors within the smartphone itself, while 
others rely on external sensors, including smartwatches, fitness trackers, 
telehealth devices, and web-cameras. 

Two critical general issues include the safety and efficacy of interven-
tions. (For other ways of evaluating apps on dimensions such as engage-
ment, functionality, aesthetics, information quality, and subjective quality, 
see Choi et al., 2018.) Do these apps really benefit the user by improving 
their health and well-being, and if so, are these improvements long-lasting? 
And are there any potential negative consequences of use (e.g., risk of 
harm)? Unfortunately, there is not a large, high-quality evidence base to 
review, especially when it comes to long-term health outcomes. Further, 
the large and rapidly increasing number of health apps prevents regulatory 
agencies from thoroughly evaluating these issues for many technology-
based interventions. 

In the United States, the Food and Drug Administration (FDA) regu-
lates medical devices. Recent guidance released by the FDA clarifies that 
health apps that fall under the category of medical device may be regulated 
only in cases in which there exists a potential risk to the user’s safety should 
the app not work as intended (FDA, 2019). An app that uses gamification 
to motivate the engagement in physical therapy might fall under the defini-
tion of a medical device, but the risk of malfunction is unlikely to result 
in serious harm to the user. In contrast, an app that makes use of a mobile 
device’s camera to image a skin lesion, and then uses an AI algorithm to 
make a classification of whether the lesion is dangerous, would be an ex-
ample of a health app that the FDA would regulate. Should the algorithm 
be ineffective, the user can be harmed (e.g., cost of missing cancerous lesion 
or stress induced by a false alarm). Based on this guidance, many health 
apps are not FDA regulated, meaning that their efficacy is uncertain, and 
there is little incentive for app developers to conduct efficacy trials. 

Specific to the issue of older adults, health apps (and peripheral devices 
associated with them) for the most part are not developed and designed 
considering the needs, preferences, and abilities of older adults. This can 
be seen in human factors evaluations of existing health-related apps. Morey 
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and colleagues (2019) reviewed popular apps with the aim of supporting 
medication adherence and managing heart failure. Expert evaluation uncov-
ered deficiencies that would make these apps challenging for older adults to 
use, including small and hard-to-see buttons, difficult-to-navigate menus, 
confusing terminology, and other usability problems. Similar issues were 
identified in evaluating pain management apps (Bhattarai, Newton-John, 
and Phillips, 2017). Usability challenges have been noted in user testing as 
well (e.g., Wildenbos et al., 2019). Many studies have identified difficulties 
using hardware and software among older adults experiencing normative 
age-related changes in perception and cognition. Design guidelines do exist 
for how to reduce these challenges (Czaja et al., 2019). However, such 
challenges are likely to be greater for older adults experiencing cognitive 
impairment (e.g., MCI and dementia). 

Reminder Efficacy

MMI technology has the potential to greatly benefit the success of inter-
ventions at home and in the community by promoting adherence to healthy 
behaviors. Across a variety of domains, including pharmacological, behav-
ioral, exercise, and nutrition interventions, adherence can be quite poor, 
resulting in a gap between the potential and actual benefit of a treatment. 
For example, 50 percent of individuals prescribed a medication for chronic 
conditions do not take that medication as prescribed (Brown and Bussell, 
2011). MMI technology can serve two potential roles: 1) it can monitor 
whether a behavior (e.g., medication bottle was opened) has occurred, and 
2) it can provide reminders to engage in behaviors (e.g., taking a medica-
tion at a certain time).

There is a long history of study of methods to improve adherence, for 
example, to health-related behaviors, and this has resulted in the publica-
tion of several systematic reviews. Although these reviews often focus on a 
broad age range, they are informative with respect to anticipating impor-
tant issues older adults may face. With respect to medication management, 
Nieuwlaat et al. (2014) conducted a comprehensive review of general 
methods to improve adherence, and this was followed by a specific review 
of all adherence interventions that were mediated by technology (Mistry 
et al., 2015). Technology-based reminders included various telephone, text 
messaging, and software-based reminders, and remote monitoring included 
the use of telehealth devices and electronic drug monitoring. In general (for 
technology and nontechnology-based adherence interventions), this 2014 
Cochrane report arrived at the pessimistic assessment: “Even the most 
effective interventions did not lead to large improvements in adherence or 
clinical outcomes” (p. 2). For a variety of reasons, one might expect tech-
nology-based adherence interventions to be more successful, but this more 
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focused review concluded that there was limited evidence for effectiveness, 
and that adherence-promoting technology “will need to improve if clini-
cally important effects are to be realized” (p. e190). Both Nieuwlaat et al. 
and the Cochrane report noted the poor quality of many studies that have 
been conducted to date. Additional, high-powered, well-designed studies 
(with appropriate control group contrasts) are clearly needed. Further, as 
discussed later, “one-size-fits-all” interventions should be contrasted with 
personalized, customizable, and adaptive interventions to explore whether 
these types of interventions provide additional benefit. 

Simons et al. (2016) reached similarly pessimistic conclusions about the 
efficacy of “brain training” cognitive interventions for impact on everyday 
functioning, for far transfer measures (e.g., driving safety) compared to near 
transfer ones (improved performance on the training games). Given con-
cerns with sample inclusion/exclusion rules that tend to exclude comorbid 
older adults (He et al., 2016), small sample sizes, lack of adequate control 
groups, and lack of long-term assessment, a cautious conclusion is that the 
Scottish verdict “not proven” best describes the efficacy of MMI systems.

Beyond efficacy, there is also the issue of cost effectiveness. The largest-
scale clinical trial (N = 3230 people with diabetes, COPD, or heart failure) 
conducted by the National Health Service in the U.K. (Steventon et al., 
2012) showed that a telehealth intervention for chronic conditions was 
not cost effective compared to usual treatment (Henderson et al., 2013), 
primarily because of equipment costs. Technology costs usually diminish 
over time (a recent exception being the cost of “flagship” smartphones in 
the past few years), potentially altering that conclusion as technologies 
become more affordable. 

INTERVENTION STRATEGIES

Traditional intervention strategies often follow a one-size-fits-all 
approach, with the dose of the intervention identical or similar across 
individuals and changing infrequently over time. An exercise intervention, 
for example, might have individuals engage in a walking program in which 
participants are asked to walk a certain amount of time for a certain num-
ber of days each week. Likewise, an individual with hypertension could 
be prescribed medication at a dose that is adjusted over time based on 
occasional blood pressure readings. These interventions have the potential, 
unfortunately, to ignore the varying needs and attributes of the individual 
and might be insensitive or slow to adapt to the time-varying intervention 
context. 

Just-in-time adaptive interventions (JITAIs) represent an exciting new 
approach that can be implemented through a combination of mobile and 
sensor-based technologies (Nahum-Shani et al., 2017). JITAIs are character-
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ized by their ability to monitor the state and the context of the individual 
and, based on this information, provide the appropriate amount and type 
of intervention at the right time. For example, when sedentary behavior is 
detected by a worn accelerometer, an app-based JITAI might suggest that 
the individual engage in physical activity. Further, the system might suggest 
a specific activity based on the time and weather conditions. Although there 
appears to be great promise to the approach (Wang and Miller, 2019), addi-
tional higher-powered studies are needed to determine the success of JITAIs 
over other approaches (Hardeman et al., 2019), and to address the unique 
issues involved in designing successful JITAIs for older adults. 

LIMITATIONS FOR USE OF MOBILE AND 
SENSOR TECHNOLOGY IN HEALTH 

Readiness in Aging Populations

When designing a technological intervention, it is important to consider 
whether the target population is likely to have basic computer experience, 
or a home broadband connection. In early 2019, only an estimated 53 per-
cent of older adults owned a smartphone (Pew Research Center, 2019), 
meaning that technologies incorporating the use of a mobile application 
may not be practical for everyone without significant training for smart-
phone use. Additionally, older smartphone owners are much less proficient 
than younger ones (Roque and Boot, 2016). Likewise, although 73 percent 
of older adults (aged 65+) use the internet, only 59 percent report having a 
home broadband connection (Pew Research Center, 2019), which is critical 
for telehealth, mostly done with videoconferencing. Also, only 48 percent 
of “older-old adults” (aged 75+) use the internet, compared to 78 percent of 
“younger-old adults” (aged 65–74) (Czaja et al., 2019). Thus, computer 
and technology literacy are a barrier to adoption, though older adults can 
significantly benefit from computer literacy interventions, and more specifi-
cally, eHealth literacy interventions, resulting in positive changes to health 
care (Xie, 2011). 

The Challenge of Subgroups with Low Tech Adoption

Not all older adults aged 65 and older share the same knowledge about 
and access to technology products. We have already seen that more specific 
age groups can be established within the classification of older adults, and 
these subgroups have different levels of technology usage. In addition to 
age, education/income and ethnicity are also important factors. 

Across age groups, 56 percent of people with an income lower than 
$30,000 have a home internet connection, compared to 92 percent of those 
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who make over $75,000. Older adults who have retired may be living with 
a restricted budget. It is estimated that 9 percent of the older adults in 
America live below the poverty level (Czaja et al., 2019). Therefore, even 
those who are willing and cognitively able to adopt new technology and 
participate in an intervention may not be able to afford to do so. Among 
older adults, racial minorities are more likely to face the challenges of 
poverty, as are women and those who live by themselves. Racial minorities 
and those with lower socioeconomic status are also more likely to rely on 
a smartphone for internet access, without having a home broadband con-
nection (Pew Research Center, 2019). 

Thus, we cannot make broad assumptions about readiness and ac-
ceptance of technology. As MMI technology continues to develop, it will 
be important to consider that older adults may need to adopt an entire 
infrastructure of technology (e.g., home network, broadband subscription, 
specific smartphone), and not just that which is necessary for the MMI 
system itself.

FUTURE DIRECTIONS FOR MOBILE TECHNOLOGY 
SUPPORTING ADAPTIVE AGING

Several outcome criteria can be envisioned for assessing effectiveness 
of MMI systems as they mature, drawing on the RE-AIM framework 
(Glasgow, Vogt, and Boles, 1999) that was developed in the public health 
intervention field. RE-AIM criteria include reach (the percentage and risk 
characteristics of persons who receive or are affected by a policy or pro-
gram), efficacy (positive and negative outcomes for the intervention), adop-
tion (proportion and representativeness of settings, implementation (fidelity 
of delivery of the program: effectiveness = efficacy × implementation), and 
maintenance (long-term maintenance of behavior change).

Assuming that researchers can demonstrate MMI efficacy with typi-
cal, unrepresentative (He et al., 2016) older adult samples through short-
duration, high-internal-validity studies (e.g., phase three clinical trials), 
what challenges would remain? Pragmatic clinical trials (Ford and Norrie, 
2016) are a way to evaluate implementation and adoption. Current home 
monitoring studies and interventions rely on volunteers, and older vol-
unteers are more likely to have higher levels of education and income, as 
well as better health and social integration, and less likely to be minority 
than white (Howell, 2010). Further, in our studies (e.g., Evans et al., 2016) 
lower SES homes and apartments presented challenging environments for 
deployment of monitoring equipment. Internet access, a necessity for MMI 
systems, can be costly and difficult to arrange in rural settings. Broadening 
participation by underserved populations in pragmatic trials is a worthy 
goal. Also, once a system either receives FDA approval or earns a best clini-
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cal practice designation, ensuring that it is affordable and implementable is 
an important next step. 

Even if a system proves to be efficacious and cost effective, often-
overlooked features of cutting-edge technology are maintenance and 
obsolescence. Maintenance can be problematic in part because companies 
abandon commercial product lines, or go out of business. A good example 
was a recent RCT pilot study that showed significant improvement in fitness 
relative to a wait list control for sedentary middle-aged and older adults. 
It used a Jawbone UP24 monitor (wearable fitness tracker) in conjunction 
with an iPad app, and a thigh-worn ActivPAL monitor (Lyons et al., 2017). 
Jawbone discontinued the fitness tracker, so it became an “orphaned” 
device. To what extent was that specific hardware and software platform 
necessary for efficacy? 

Further, systems based on mobile devices need to contend with addi
tional challenges. U.S. consumers apparently change smartphones about 
every two years (Ng, 2019) though that period is lengthening, perhaps 
in response to smartphone cost increases and slowing improvement in 
functionality. Our suspicion is that aging adults may change phones less 
frequently, based on evidence that of those age 65 and older, 53 percent 
own smartphones and 39 percent own nonsmart cellphones compared to 
ages 18–29, where 96 percent own smartphones and 4 percent own non-
smart cellphones (Pew Research Center, 2019). This would mean that older 
adults are likely at greater risk for device obsolescence. Mobile operating 
system changes by Apple (iOS) and Google (Android OS) can “break” 
applications, so apps must be maintained and updated. Considering life
spans from onset of chronic conditions, a 10- to 20-year MMI program 
is conceivable. Focusing on technology functions rather than devices (e.g., 
Skubic et al., 2014) can address obsolescence.

Finally, maintenance, in the RE-AIM sense, assumes that people will 
continue to use the MMI system over extended periods of time (years) to 
support positive changes. Chronic conditions, such as hypertension, require 
vigilance, and as noted earlier, adherence to taking a prescribed medication 
is very poor in the general population and for older adults. There is little 
information available about how best to motivate aging adults to adhere 
to treatments over long-term intervals, especially when payment to partici-
pants is unavailable. 

A recent study (Scherbina et al., 2019) of 2,783 iPhone users age 18 
and older (M = 48 years, a middle-aged sample) used a smartphone app to 
try to increase physical activity over a four-week period; the app offered 
four different intervention types for one week each (crossover design) 
following a one-week baseline period. All conditions increased step count 
about 10 percent for those who completed at least one intervention; how-
ever, that represented 1,075 people only—a 60 percent attrition rate that 
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does not bode well for long-term adherence. Only 493 people completed 
all interventions, representing an attrition rate of 83 percent. 

SUGGESTIONS FOR FUTURE MMI STUDIES 
AND RESEARCH PRIORITIES

We agree with earlier conclusions (e.g., Joe and Demiris, 2013) that too 
many studies are very short term pilot or feasibility studies. It was difficult to 
locate robust studies demonstrating MMI efficacy using older adult popula-
tions. None followed the full chain of measurement, prediction/inference, and 
just-in-time intervention, so the following could be priority areas.

Potential Research Priorities for MMI Study Design

•	 Future studies need to address weaknesses such as small, unrepre-
sentative older adult samples, lack of adequate control groups, and 
lack of long-term assessment. This may entail funding for a large, 
multisite study like ACTIVE (Ball et al., 2002). 

•	 Effective MMI systems can be facilitated by partnerships between 
the research community and industry to enhance usability, scal-
ability, and deployment. 

•	 Given that multimorbidity becomes the norm in old age, MMI 
studies need to relax exclusion rules to enhance generalizability of 
results.

•	 MMI systems should be designed to honor/respect privacy rights. 

Potential Research Priorities for MMI Technology Acceptability

Even if an MMI system can show efficacy and cost effectiveness, its 
value for enhancing well-being in our aging population will be in jeopardy 
if it is not adopted and used. 

•	 Studies of adoption and use of MMI systems need extended time 
frames (e.g., decades) to assess longer-term efficacy and cost effective
ness commensurate with lengthened life spans burdened by later life 
chronic diseases.

•	 Studies need to incorporate diverse samples including young-old, 
middle-old, and old-old users; those with disabilities; and disad-
vantaged groups to gauge comparative effectiveness of MMI versus 
home-based sensor technology.

•	 It would be ideal to tap into existing longitudinal studies, such 
as National Health and Aging Trends Study (NHATS), Health 
and Retirement Study (HRS), National Health and Nutrition 
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Examination Survey (NHANES)  to create subsample MMI study 
opportunities.

•	 Encourage interdisciplinary MMI teams encompassing engineer-
ing, computer science, data science, health, and behavioral science 
through interagency projects.
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Mobile and Sensor Technology as a Tool 
for Health Measurement, Management, 
and Research with Aging Populations

Elizabeth Murnane1 and Tanzeem Choudhury2

INTRODUCTION

Advances in medicine, science, and technology over the last century 
have produced demographic changes—and in particular, a growing popu-
lation of older adults. Life expectancy is up, premature death is down, 
and people are living longer than ever before (NCHS, 2019). Further, the 
overall age distribution is shifting, with more people in the U.S. now over 
age 60 than under age 15 (Carstensen et al., 2015); and over the next 20 to 
30 years, the number of adults over 65 is estimated to double, to account 
for 1/5 of the global population (WHO, 2013). While a huge achievement, 
aging societies also present novel challenges to health care. In particular, 
as incidence of infectious illnesses common in the early 20th century fell 
and people started living longer, rates have considerably grown for non-
communicable chronic diseases, mental health problems, and age-related 
declines (WHO, 2015). Such conditions are now the leading cause of sick-
ness, disability, and death around the world and account for over 70% of 
the global burden of disease (Forouzanfar et al., 2016; WHO, 2014). Apart 
from mortality, most chronic diseases also negatively impact functioning 
and overall quality of life (Megari, 2013). These statistics also foreshadow 
an unsustainable financial burden (Banerjee, 2017), with global health care 
expenditures anticipated to reach $47 trillion by 2030 (Bloom et al., 2018), 
as prevalence continues to increase worldwide (Saranummi et al., 2013). 

1 Thayer School of Engineering, Dartmouth College.
2 Computing and Information Science, Cornell Tech.
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For older adults, the occurrence of such conditions is even higher and 
estimated to continue growing. Over 80% of people 65 years and older 
have at least one chronic illness (Anderson et al., 2002), and over 75% 
have two or more (NCOA, 2015), including mental health issues such as 
anxiety, dementia, depression, substance abuse, and elevated suicide rates 
(NCOA, 2015). Critically, however, 2/3 of seniors are unable to receive the 
treatment they need (NIMH, 2014).

Important to note is that these conditions are linked with how peo-
ple live their lives. Today’s top risk factors for premature death all relate 
to lifestyle choices (diet, physical activity, smoking, and excessive alcohol 
consumption) (Mensah, 2006), with such behaviors contributing more to 
mortality rates than infectious or toxic agents (Mokdad et al., 2004). Worth 
acknowledging is the major influence environmental exposures, quality of 
care, and socioeconomic factors do have on health, including inequities 
(Saranummi et al., 2013); and it is not necessarily fair to consider, for exam
ple, poor diet or physical inactivity strictly as “choices” if a person lives 
in a food desert or an area with poor walkability. Still, research increas-
ingly links behavioral factors with physiological and psychological wellness, 
including during the later life span (Cowie et al., 2016; Macera et al., 2017), 
contributing to a growing consensus that “the single greatest opportunity 
to improve health and reduce premature deaths lies in personal behavior” 
(Schroeder, 2007, p. 1,222) and that for older people specifically, behavior-
based approaches can promote positive aging (Cowie et al., 2016). Indeed, 
the health domain is witnessing a major shift (Christensen et al., 2009) from 
an illness-centric, visit-test-treat model toward more proactive, self-driven 
strategies, with a focus on prevention and overall well-being (Swan, 2012). 
On the research front, public agencies, including the National Institutes of 
Health, are launching programs to prioritize behavior change (Nielsen et 
al., 2018), and clinical approaches are increasingly incorporating behavioral 
treatments, which not only get people more directly involved in their own 
care but also help reduce pharmacological risks (Petrovic et al., 2012).

Technology presents a powerful mechanism for monitoring and man-
aging behavior in such ways, while reducing costs and buffering physician 
shortages. Digital health solutions that combine mobile applications, sen-
sors, and wearables can provide personalized diagnosis and detection of 
health indicators as well as care and coaching that is continuously available 
and directly delivered to end-users. Further, such strategies can reach those 
facing financial and physical barriers to accessing care (Mohr et al., 2010; 
2013) and also act as a window through which researchers can examine 
and understand the practices, needs, and outcomes of traditionally under-
studied and underserved groups. 

This chapter overviews the use of mobile and sensor technologies as 
a tool for both health research as well as health management, to support 
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adaptive aging efforts. We present examples from our own and others’ 
research in this emerging area to illustrate the promising opportunities 
mHealth offers, while also highlighting important future steps and critical 
considerations.

MOBILE HEALTH (MHEALTH)

What Is mHealth?

Mobile health, or mHealth, broadly refers to the use of mobile phones 
or other wireless devices to support health care (Kay et al., 2011). mHealth 
grew out of telehealth, with both enabled by the introduction of modern 
telecommunication and information technology as a way to deliver health 
care from a distance. mHealth and telehealth can be considered subsets 
of eHealth (Oh et al., 2005), an umbrella term that describes the local 
or remote use of digital data or technology to support health care (Della 
Mea, 2001). Beyond telehealth services, eHealth includes electronic health 
records, clinical decision support systems, and physician instruction tools. 
The clinical use of such technologies is often referred to as health or medical 
informatics and is concerned with the collection, storage, retrieval, man-
agement, and use of health information by a patient’s care providers. In 
this chapter, however, we focus less on the clinical context and more on 
the at-home, self-driven, vernacular use of mHealth tools (which may be 
in combination with or entirely outside of physician-guided care), focusing 
on “people” rather than exclusively “patients.”

To date, the bulk of mHealth attention has been on mobile phones, 
which continue to gain sophistication in terms of data capture features and 
interactive affordances. A variety of wearable devices (e.g., eyewear, rings, 
shoes, watches, wristbands) are now entering the retail market with similar 
capabilities. Such functionality permits broad-scale, naturalistic collection 
of health-relevant data in an extremely granular and unobtrusive manner. 
The ability to observe behavior continuously and in context also makes it 
possible to tailor interventions to optimize effectiveness for an individual 
user, plus these technologies provide an interface through which such feed-
back can be delivered.

Adoption and Acceptability of mHealth Tools by Older Adults

Recent years have seen a swell in personal technology penetration, espe-
cially mobile phones. In the U.S., over 95% of people own mobile phones, 
with over 80% owning smartphones specifically (Pew, 2017); globally, 85% 
of adults own a mobile phone, with a median of 45–76% owning smart-
phones in emerging and advanced economies (Pew, 2018). Smartphone 
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ownership does decline with age, but that trend is changing over time; and 
studies indicate that stereotypes of older adults being unable and unwilling 
to try new technologies is a misconception (Erber and Szuchman, 2014; 
Kurniawan, 2008). Over 3/4 of individuals aged 65+ own a cellphone and 
1/5 a smartphone, nearly 1/2 of those 75+ own a cellphone (Anderson, 2017; 
Anderson and Perrin, 2017; Levine et al., 2016), and research observes fre-
quent use by older adults of text messaging especially, given the low usage 
barriers (Schülke et al., 2010). Further, studies show more older individuals 
register for mobile phones every day, with market research indicating that 
smartphone use among some older adult segments is actually growing at a 
faster rate compared to other age groups (Deloitte, 2017). 

In terms of attitudes, studies find older adults exhibit open-minded 
receptivity and willingness toward mHealth (de Veer et al., 2015; Parker et 
al., 2013; Zhou et al., 2014), especially tools to monitor and manage symp-
toms, encourage physical activity, and remind of appointments (Klimova, 
2016). However, older adults also express perceptions that modern technol-
ogy is not necessarily designed to suit their abilities (Goddard and Nicolle, 
2012). mHealth adoption may therefore not be constrained by seniors’ 
disinterest but rather devices’ failure to meet their needs—needs designers 
could better consider to accommodate cognitive, motor, visual, or other 
age-related changes.

Common Applications of mHealth in the Healthy Aging Context

mHealth technologies often focus on diagnosis, monitoring, and/or 
intervention; and their functionality can be broadly organized across an 
information flow involving data input, translation, and output (Murnane, 
2017). First, rich datasets about behavior can be collected in context, 
through both manual self-report and automated sensing. From this infor-
mation, health metrics can be computed, symptoms detected, and future 
status forecasted. Given this model of an individual’s health and contrib-
uting factors, tailored feedback can then be delivered to end-users, care 
teams, and other stakeholders to support awareness, action, and long-term 
management (Kang et al., 2010).

With specific respect to older adults’ use of mHealth, early work com-
monly focused on collecting data about symptom levels (e.g., of depression, 
fatigue, pain), tracking medication intake and side effects, delivering health 
education and literacy materials, and serving reminders through text mes-
sages or notifications to adhere to medication schedules or attend health 
care appointments (Free et al., 2013; Tomlinson et al., 2013). As the field 
continues to advance, we are seeing more sophisticated monitoring—for 
example, fall detection systems (Chaudhuri et al., 2014; Stone and Skubic, 
2015) and lower-burden interfaces tailored to older adults—for example, 
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designed with motor, visual, or other age-related changes in mind (Adams 
et al., 2018; Wildenbos et al., 2018). Further details and examples of such 
mHealth applications are presented in the next section.

MHEALTH FOR MONITORING AND INTERVENTION

Collecting Data Relevant to Behavior, Health, and Contributing Factors

A central feature of mHealth systems is an ability to capture data. This 
input provides details about the user’s behaviors, environment, or other 
personal attributes relevant to the health outcome(s) the tool is targeting. 
These data can be collected manually by a user, automatically by sensors, 
or through some hybrid approach. Here we overview ways mHealth tech-
nology captures data, providing examples and pointing out advantages, 
drawbacks, and tradeoffs among these various approaches.

Manual Reporting

People have self-tracked health information long before digital tools 
existed to support the activity. In the 1940s, clinical research began using 
written diaries, in which people could self-report symptoms and health 
actions as they occurred (Allport, 1942; Verbrugge, 1980). While such pen-
and-paper approaches are familiar and easy to use for many people, they 
do face well-known limitations, including the risk of forgetfulness, retro-
spection errors, and inadherence (Bolger et al., 2003), especially for older 
populations (Adams et al., 2017). Over the past few decades, research has 
looked at how technology can help address these limitations. At first, studies 
used digital devices, such as pagers, pre-programmed wristwatches, or text 
messages to deliver reminders to record information, though the recording 
itself was still made on paper. This sort of prompted self-report is associ-
ated with ecological momentary assessment (EMA; Stone and Shiffman, 
1994) and experience sampling method (ESM; Csikszentmihalyi and Larson, 
2014), which are methods used to collect information about various aspects 
of daily life in the moments they are being experienced. 

Today, mHealth research on applying this style of in situ reporting 
to aging contexts has largely focused on the smartphone, given both its 
ubiquity as well as its support for rich interactions. Typically targeted indi-
cators include physical activity (Maher et al., 2018), mental health (Moore 
et al., 2016), symptoms of chronic conditions such as diabetes (Whitlock 
and McLaughlin, 2012) or pain (Adams et al., 2017; García Palacios et 
al., 2014), and more general well-being indicators e.g., mood, sleep, and 
social interactions (Doyle et al., 2014). Research shows that older adults 
would additionally like to track restful and stress-relief activities as well 
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as healthy eating (Davidson and Jensen, 2013) and abnormal changes in 
health (Caldeira et al., 2016).

The manual capture of data is associated with several benefits. Self-
tracking can empower users with a sense of agency (Murnane et al., 2016) 
and foster self-awareness (Bentley et al., 2013; Choe et al., 2014). The 
“obtrusiveness” is the main advantage, as it enhances mindfulness about 
behavioral choices and adherence to goals (Kopp, 1988; Korotitsch and 
Nelson-Gray, 1999). Further, manual tracking allows more personal control 
over what information is disclosed, which is important to older adults from 
a privacy perspective (Consolvo, et al., 2004a; 2004b).

However, manual self-tracking is associated with disadvantages as well. 
Foremost, self-report can be burdensome (Connelly et al., 2006) due to the 
time and effort it requires. This is a particular challenge if a technology is 
intended for long-term use (e.g., to manage a chronic health condition). 
Data inaccuracy can also occur in cases where a person’s capacity for 
reliable self-assessment is compromised, for instance due to cognitive or 
memory declines. Further, while increased self-awareness can induce desir-
able behavioral changes, psychological reactance can also result by drawing 
one’s attention to uncomfortable symptoms or thoughts (Kohl et al., 2013). 
Finally, it can be infeasible for a person to capture the array and granular-
ity of data necessary for a system to produce a sufficiently comprehensive 
profile about that individual, comprising the multiple personal variables, 
behavioral determinants, and other indicators needed to accurately model 
a health outcome of interest (Bentley et al., 2013). This motivates more 
system-driven approaches to data collection that are either fully automated 
or that complement self-report with passively captured information.

Passive Sensing

With automated or “passive” data collection, physiological or behav-
ioral data are captured using sensors embedded in phones, wearables, or 
surrounding environments. As mentioned, the mobile phone has rapidly 
evolved into a powerful computing platform, with a variety of sensors for 
capturing motion (e.g., accelerometers, gravity sensors, gyroscopes), loca-
tion (e.g., GPS, orientation sensors, magnetometers), and environmental 
data (e.g., barometers, photometers, thermometers, cameras, microphones). 
Reviews provide a summary of prominent health-oriented smartphone 
sensing systems (Chen et al., 2014; Cornet and Holden, 2018; Klasnja 
and Pratt, 2012). Much existing work on mobile sensing for older popu-
lations has focused on passively tracking mobility—for example, using 
accelerometer and GPS data to assess physical activity and frailty (Castro 
et al., 2015) or automate standing and balance tests based on inertial sen-
sors (Madhushri et al., 2016). Another recent thrust aims to determine 
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“digital biomarkers” of older adult functioning, especially for cognitive 
declines (Piau et al., 2019) or to derive computational proxies for subjec-
tively experienced symptoms, such as pain intensity (Aung et al., 2016). 
Speech-based biomarkers are also becoming more robust, including to 
assess neurodegeneration in older adults (Cormack et al., 2019), such as 
in Parkinson’s disease (Moro-Velazquez et al., 2019). Rather than utilizing 
hardware sensors, “soft sensing” captures data from software usage logs 
to passively infer health indicators (De Choudhury, 2014), for example, to 
predict cognitive declines in older adults based on smartphone use, based 
on features including app switching, bursts of app use, and the daily timing 
of use (Gordon et al., 2019).

On-body sensing approaches have used a variety of wearable sensors 
over the years, such as pedometers (Consolvo et al., 2006; Lin et al., 2006) 
and biometric sensors like electrocardiography (ECG) (de Oliveira and 
Oliver, 2008) to capture sound, temperature, light, and humidity among 
other inputs (Choudhury et al., 2008). Many of the recent commercial 
wearable devices for healthy monitoring (e.g., Apple watch, Fitbit) are 
essentially accelerometer-based wristbands that passively monitor activity 
and sleep (Rawassizadeh et al., 2015); some newer models incorporate 
additional sensors, for instance, to measure heart rate or galvanic skin 
response, and new form factors (e.g., the Oura ring) are also emerging. For 
older adults, most applications again focus on measuring mobility (De Bruin 
et al., 2008) as well as cardiac vital signs (Baig et al., 2013). Wearable 
device development continues advancing, including to incorporate sensors 
into clothes and jewelry. For instance, e-textile pants have been developed 
to collect data about acceleration, angular velocity, and pressure in order to 
assess motion impairments in older users (Liu et al., 2008), while the recent 
Phyjama system can monitor older adults’ heart and respiration rates as 
well as detect posture during naps (Kiaghadi et al., 2019). As another exam
ple, the Smart Jewelry Bracelet embeds an accelerometer, gyroscope, and 
flex and temperature sensors to collect data on which machine learning is 
run to automatically distinguish regular movement from potential physical 
attacks or falls (Patel and Hasan, 2018). 

The main disadvantages associated with on-body sensing are poten-
tial discomfort of wearing the device, its limited battery life, and the fact 
that smaller (e.g., wrist- or finger-worn) form factors constrain the sen-
sors that can be contained, although battery advances and miniaturiza-
tion are helping address some of these issues (Jayatilaka et al., 2019; 
Rawassizadeh et al., 2015). As with manual data collection, forgetfulness 
can be an issue for passive strategies, given a user may forget to wear or 
charge the sensing device, especially potentially an older user with declin-
ing memory. Additionally, older adults’ drier skin is also known to impede 
the responsiveness of capacitive interfaces (Merilampi and Sirkka, 2016).

http://www.nap.edu/25878


Mobile Technology for Adaptive Aging: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

48	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

As environment-based, contactless sensors are not as affected by these 
constraints, researchers have also been exploring how instrumented homes 
and other spaces can automatically capture health data. One early system 
captured weight using a scale built into the toilet, heart rate data using an 
ECG monitor in the tub, and body temperature from a bed sensor (Ogawa 
et al., 1998; Tamura et al., 1998). More recently, others have placed sensors 
to automatically collect health metrics into furniture like chairs (Griffiths 
et al., 2014) or mattresses (Ko et al., 2015). Internet of Things (IoT)-
connected smart homes and hospitals could further extend such capability 
to numerous other objects in living spaces or dedicated care environments 
(Marques, 2019). Regarding older adults, systems have used radio signals 
to detect falls (Tian et al., 2018), measure gait velocity and stride length 
(Hsu et al., 2017a), and monitor insomnia and sleep (Hsu et al., 2017b). 
Computer vision researchers have also developed contactless approaches 
using depth and thermal sensors to automatically watch for acute inci-
dents (e.g., fever, immobility, substance abuse) as well as clinically relevant 
long-term activities (e.g., eating, restroom use, sleeping) for seniors living 
independently (Luo et al., 2017; 2018).

Overall, automated sensing helps relieve user burdens by reducing both 
the time and the mental overhead associated with self-tracking, plus sensed 
data can be more accurate and granular than manually tracked data. Passive 
sensing can also capture informative quantitative signals that are impercep-
tible to the person generating them (Whitson, 2013). However, sensors can 
be privacy invasive (Reeder et al., 2016) or uncomfortable to wear for older 
adults (Steele et al., 2009), and they can reduce personal awareness about 
collected data (Li, 2009). Automated tracking can also generate massive 
volumes of data that impose storage and security challenges. In addition, 
while automatic data collection can work well to acquire some objective 
information like heart rate or location, accuracy is still elusive for some 
types of behavioral tracking (e.g., food intake) especially outside the lab, 
and sensing does not lend itself to measurement of subjective experiences. 

Hybrid and Semi-automated Approaches to Health Measurement

Hybrid strategies that support both manual and passive modes, includ-
ing adaptively shifting between the two based on user status, may help to 
relieve burdens while preserving agency, autonomy, and opportunities for 
experiential sharing and self-reflection. One early hybrid example is the 
UbiFit system, which automatically inferred walking, running, and cycling 
but also allowed the user to add activities it could not automatically track 
like yoga or swimming (Consolvo et al., 2008). To infer activities, UbiFit 
made use of the similarly seminal Mobile Sensing Platform (Choudhury 
et al., 2008), which was extended in follow-up work to passively assess 
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older adults’ physical and mental well-being based on a combination of 
accelerometer, barometer, and audio data, using an ensemble of classifiers 
and privacy-sensitive speech-processing techniques (Rabbi et al., 2011). 

Recently, researchers have worked to formally characterize the spec-
trum from fully manual, to semi-automated, to fully automated tracking, 
including to identify strengths and weaknesses of these various approaches 
and their respective applicability for various contexts, populations, and 
health targets (Choe et al., 2017). The OmniTrack system develops an 
architecture that instantiates such principles and enables users to flexibly 
define custom tracking setups (Kim et al., 2017).

Digitally Delivered Informatics and Interventions

In addition to collecting data and analyzing them to derive health 
metrics, the other important feature of mHealth systems is the representa
tion of this information through legible feedback that provides opportunities 
for self-awareness, wellness management, and, potentially, behavior change. 
However, compared to the aforementioned work to develop mHealth-
based data collection and health assessment techniques, the research on 
the informatics and interventions side of the equation is more limited 
for aging groups. As mentioned, most interfaces focus on delivering text-
based reminders and nudges (e.g., to take medication, complete condition-
specific tasks, or perform general physical activity); see Klimova (2016) 
and Changizi (2017) for reviews. Or, given that the field is still emerging, 
work often offers roadmaps to chart out future directions for mHealth 
interventions (Faiola et al., 2019) but has not yet reached the implementa-
tion stage. Such ideas that are gaining increasing interest include virtual 
health advisors, robotic assistants, or commodity devices that supply neuro
feedback for stroke rehabilitation and cognitive functioning in elders.

Feedback Design Dimensions

In designing mHealth interventions, important dimensions to consider 
are the feedback’s format, delivery medium, attentional demand, prescrip-
tiveness, and level of personalization. Existing mHealth systems largely 
display information in a visual format (e.g., text, charts, or other graphics). 
In the aging context, natural language and haptic feedback are increasingly 
being explored—for example, to support stroke rehabilitation (Micallef et 
al., 2016) or improve walking stability (Costa et al., 2015), as such formats 
are seen as intuitive alternatives to graphical user interfaces for low-vision 
older users. However, age-related declines in hearing or motor skills can 
present usage barriers for audio- or tangible-based interaction, and such 
usability trade-offs must be weighed as appropriate for a specific applica-
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tion. Regarding the delivery medium, smartphone screens do predominate, 
though other mechanisms include wearable displays, smart speakers, or 
virtual reality, including low-cost cardboard viewers that wrap around a 
smartphone to make the experience more immersive, and built environments 
can deliver information via walls or other objects in one’s living or work 
spaces (Liu et al., 2016). Important considerations when selecting a feed-
back medium are affordability and usability as well as ensuring information 
receipt, especially if time- or context-sensitive. This makes phones attractive 
due to their portability and the tendency for users to keep them nearby, plus 
it relieves the need to carry a separate, dedicated health management device.

In terms of attentional demand, feedback can be provided via subtle 
cues or more conspicuously. Ambient displays often focus on aesthetics and 
aim to integrate well into the environment without being distracting, while 
overt feedback more directly demands that a person notices and engages 
with it (Matthews et al., 2007). Just-in-time interventions, which deliver 
personalized, contextually aware, and well-timed feedback, tend to fall at 
the overt end of this spectrum; see Nahum-Shani et al. (2014) for a review. 
On the more ambient side, research focusing on older adults has explored 
physical artifacts and portrait-based displays, such as a touch-screen tablet 
placed inside a wood frame (Consolvo et al., 2004) or a photograph border 
that uses butterflies, trees, and swans to represent daily activity, health, 
and relationship information (Mynatt et al., 2001). Recent work has built 
on these foundations to explore the use of ambient displays and visualiza-
tions to promote older adults’ exercise (Rodríguez et al., 2013), medication 
adherence (Zárate-Bravo et al., 2016), and intergenerational connectedness 
(Cornejo et al., 2013).

Prescriptiveness refers to whether a tool’s feedback is more directive 
versus descriptive. On the prescriptive side, feedback might leave little room 
for user interpretation; for example, the MyBehavior system (Rabbi et al., 
2015) conveys dietary feedback with explicit directives (e.g., “Avoid large 
meal”). On the other hand, many existing personal informatics research 
apps and consumer tools provide more open-ended, descriptive reports (e.g., 
a chart of step counts across the week) that leave the interpretation to the 
user. Each style comes with tradeoffs to consider, such as the user’s (in)ability 
to do this sensemaking and whether personal value might be derived from 
the deliberate effort of determining how to act on presented information. 

Finally, the level of personalization is important to consider. In the 
aging context, pursuing more personalized and adaptive solutions is likely 
worthwhile, given the variety in older adults’ expressed preferences regard-
ing health topics to track (Davidson and Jensen 2013), together with the 
fact that “older adults” can actually span multiple decades in age and may 
have therefore experienced highly variable historical contexts, life circum-
stances, and health trajectories.
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Overall, this is not meant to be an exhaustive set of all the possible 
attributes feedback can possess. Other characteristics to consider include 
audience (e.g., private vs. public viewability), scope of input (e.g., personal-, 
family-, or community-level data), and data permanence (e.g., temporary 
vs. archival), among a variety of other possible dimensions. Still, we see 
format, delivery medium, attentional demand, prescriptiveness, and person-
alization as key design levers to be configured when deciding how informa-
tion will be conveyed by mHealth technology for adaptive aging.

mHealth as a Research Tool

Beyond supporting diagnosis, treatment, and long-term care, mHealth 
approaches can help drive basic research to advance fundamental scientific 
understanding about health and related behaviors in naturalistic settings, 
over longitudinal periods, and with large and diverse groups. 

Open Platforms

To date, there have been a number of academic projects that contribute 
reusable and extensible mHealth research platforms for capturing passive 
and self-reported data as well as testing interventions at scale. AWARE 
(Ferreira et al., 2015) and Purple Robot (CBITS, 2015) provide access to 
the Android sensor framework, and since its initial introduction, AWARE’s 
development team has continued to expand its functionality, for example, 
to add support for the iOS operating system. MyExperience (Froehlich et 
al., 2007) similarly supported passive sensing, together with context- and 
physiologically triggered prompts for subjective self-reports. In addition to 
data collection, the open-source Ohmage toolkit (Ramanathan et al., 2012) 
offers functionality specifically aimed at visualizing and analyzing captured 
data. The Open mHealth Platform (Estrin and Sim, 2010) aims to organize 
a community around developing a standard for mobile health data. Impor-
tant to note, however, is that these open platforms have been developed for 
general purpose use, which motivates research to investigate and take steps 
to extend their accuracy, coverage, and overall appropriateness when used 
by older populations and applied to adaptive aging contexts. 

Through the deployment of such platforms, it is possible to conduct 
research that circumvents limitations of standard scientific approaches. 
Specifically, while lab studies enable rigorous control over conditions, 
experiments depend on substantial experimenter labor, are costly to con-
duct, face known issues with sample representativeness, and do not support 
examining phenomena “in the wild” during everyday life and over time. 
Randomized controlled trials (RCTs) get out of the lab to test interven-
tions with larger samples and for longer periods; however, RCTs are also 
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resource intensive, which precludes many important trials from ever being 
conducted. For example, it has been estimated that it would require 127 
RCTs involving 63,500 patients over 286 years to produce the evidence 
necessary to inform clinical decisions about Alzheimer’s disease (Saver and 
Kalafut, 2001).

From Self-Knowledge to Scientific Knowledge

Recently, mHealth researchers have begun designing technology to 
support a notion of self-experimentation, which has a long history in medi-
cine and psychology whereby doctors traditionally volunteered for ethical 
reasons as the first subject in an experiment with unknown risks (Altman, 
1998). Today in the mHealth context, this practice is being explored as a 
way, for instance, to assist an individual with irritable bowel syndrome 
identify foods that trigger symptoms or to help a person determine whether 
exercising in the morning results in more energy later in the day (Karkar 
et al., 2016). This work is motivated by the idea that people want to use 
mHealth technologies to answer specific questions like these about their 
health, but current tools fail to effectively support such diagnostic self-
tracking (Karkar et al., 2015). For example, many tools output graphs of 
raw data that users find difficult to interpret or act on (Epstein et al., 2014), 
and tools generally do not support personal experiments that have sufficient 
methodological rigor (Choe et al., 2014).

Self-experimentation technologies help a user self-administer a con-
trolled study; the tool creates a schedule, encourages adherence to condi-
tions, and automatically runs statistical tests from which a user can draw 
causal conclusions. The experiment follows a single-subject design (also 
known as an n-of-1 study), which is sensitive to individual differences and 
where a person serves as his or her own control (Lillie et al., 2011). These 
n-of-1–style mHealth efforts coincide with interest from the medical com-
munity to adopt models of precision medicine that focus on individual, 
rather than average, responses to particular treatments. Such an approach 
can be advantageous compared to methodologies involving larger samples 
(e.g., RCTs), which can lead to therapeutic solutions that are beneficial to 
some patients but minimally effective or even detrimental for others (Gabler 
et al., 2011). For example, some routinely used medications benefit as few 
as 1 in 50 individuals; other drugs have been found to be harmful for entire 
ethnic groups—an outcome not often identified in clinical trials, since they 
are typically biased toward white Western participants (Schork, 2015). 
Similarly, clinical trials that skew toward younger populations do not neces-
sarily reveal adverse drug reactions in older adults (Petrovic et al., 2012).

Altogether, there is a massive opportunity to push forward the develop-
ment of mHealth infrastructures to generate population-level knowledge 
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from personal-level data. Doing so will require addressing a variety of 
open questions, such as how to create tools that adequately scaffold older 
individuals in designing and running their own n-of-1 studies to rigorously 
test hypotheses about themselves, how to determine appropriate statistical 
approaches for causal inferences in these cases, and ultimately how to syn-
thesize individual findings into generalizable knowledge.

CONCLUSION

Realizing the Potential of mHealth for Adaptive Aging

mHealth technologies have the potential to play a positive, perhaps 
transformative, role in supporting the health and well-being of our aging 
population. To fully realize this potential, however, some barriers must be 
overcome and facilitating steps taken, including to both address general 
challenges as well as develop age-specific design solutions. 

Barriers and Facilitators to mHealth Use

In general, the need for reliable network coverage can be a challenge, 
particularly in rural or developing areas (Salemink et al., 2017), which has 
implications for data fidelity and care delivery. Developing solutions that 
do not require continuous real-time cloud connections or sending large 
amounts of data and that can continue to function offline would help in 
low-internet conditions. For example, progressive web apps could be a 
desirable strategy. 

Other previously identified barriers to entry for older adults include the 
cost of and lack of familiarity with mHealth tools (Bujnowska-Fedak and 
Pirogowicz, 2014; Lee and Coughlin, 2015; Mercer et al., 2016; Parker et 
al., 2013; Peek et al., 2014). Android pricing is more affordable compared 
to iOS devices, so choosing to build an Android app or host functionality 
on a website that can be accessed on any platform could help. For older 
patients with low digital literacy, it is necessary to devise effective strate-
gies for training, which studies show boosts self-efficacy and lowers anxiety 
regarding the use of health technology (Wild et al., 2012). Such onboard-
ing might take place in inpatient settings, outpatient clinics, or as part 
of community-based programs; or understandable tutorials could also be 
built into the mHealth application so that the user would have the option 
to complete it at home either alone or with family. Built-in support could 
then continue over time, gradually introducing more advanced features or 
to assist with device maintenance. 

Such training could help build skills, but developing more usable, age-
tailored interactive functionality could also substantially boost adoption 
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(Parker et al., 2013), especially for cases where lower engagement with 
digital health technologies can be attributed at least in part to functional 
limitations (e.g., age-related declines in psychomotor skills, vision, or hear-
ing). Interface and interaction design processes can accommodate such 
constraints, both to improve existing and to inform novel devices. The next 
subsection offers specific strategies.

Design Constraints and Goals for Adaptive Aging Tools

Unfortunately, research indicates most self-tracking technology is not 
designed to support older adults’ needs, including limitations in cognition, 
motivation, perception, and physical ability (Doyle et al., 2014; Wildenbos 
et al., 2018). To improve accessibility, interfaces could include large touch-
target regions, readable fonts and font sizes, high-contrast screens, simple 
interactions, low manipulability, and enhanced volume control. For ex-
ample, aiming to support pain reporting for older adults, the Meter mobile 
app (Adams et al., 2017) implements similar strategies (e.g., oversized 
fonts and graphics as well as large touch regions that accommodate low 
accuracy), while the Keppi device (Adams et al., 2018) moves away from 
the screen entirely by providing a tangible user interface that the user can 
hold, press, and squeeze to report pain levels in a more natural and intuitive 
manner. To further relieve dependence on visual and motor-based interac-
tions, the design of voice-based interfaces could be explored for seniors, 
who now account for over one-third of all voice assistant users (Olmstead, 
2017). While recent studies do indicate voice assistants are useful for older 
adults (Pradhan et al., 2019), trade-offs related to hearing loss would be 
important to weigh.

Beyond usability issues that relate to physical functioning, it is also im-
perative to consider challenges of information overload and devise designs 
for delivering content in a way that is also cognitively legible. One promis-
ing strategy is moving from heavily quantitative or text-based reporting—
which prior research establishes is often overwhelming, demotivating, 
and hard to interpret (Cohen and Sherman, 2014) including for older 
adults (King et al., 2016)—and toward more qualitative representations 
of personal data and health feedback. For example, work on designing 
for populations with compromised concentration or other perception dif-
ficulties has developed novel informatics approaches that encode personal 
data (e.g., activity levels, hours slept, social interactions) as visual features 
(e.g., wave height, water color, or amount of sediment in an ocean encod-
ing scheme) in ways that resonate with the lived experiences the informa-
tion represents (Snyder et al., 2019). There is substantial opportunity to 
similarly explore other media formats (light, audio, haptic) for delivering 
intuitive feedback.
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Ethical, Privacy, and Safety Considerations

A variety of ethical concerns are necessary to take into account. Fore-
most, responsible management of collected data is critical given the highly 
personal nature of behavioral, emotional, and other health-relevant infor-
mation, which also may be sensitive, stigmatic, and exploitable, especially 
for a potentially vulnerable group, such as older adults. Older adults have 
indeed raised general privacy concerns in previous research on mHealth 
interventions (Chung et al., 2014; Consolvo et al., 2004; Gao 2015; Reeder 
et al., 2016; Steele et al., 2009; Young et al., 2014). Going forward, there is 
a need to directly investigate questions related to older adults’ understand-
ing and comfort levels with the collection of various types of data. 

Specific strategies could include designing mechanisms for users to 
better communicate privacy preferences to mHealth tools, turn on and off 
data collection (Caine et al., 2010), and receive information about the im-
plications of sharing one’s data. Usable controls to access, view, and delete 
captured data could enhance security, as could making two-factor authenti-
cation more inclusive for older adults (Das et al., 2019). Privacy-preserving 
sensing methods can also be developed, such as processing locally and 
extracting features insufficient to reconstruct raw data (Rabbi et al., 2011).

When mHealth tools are treated as a platform for research, this 
will require policies for restricting which analyses and queries different 
researchers can perform on the data through access controls, anonymiza-
tion, and differential privacy. Crafting such a set of data protections will 
require human-centric security design and also open up additional research 
opportunities to explore how cognitive models of security and data risk 
affect how careful scientists are with data.

Regulations and lawmaking are also necessary to consider, such as 
implementing protections to guard against insurance companies setting 
rates based on a person’s historical mHealth data or predicted future health. 
Procedures for formal vetting of mHealth technologies (e.g., FDA approval) 
are also imperative, given these sorts of potential risks to personal welfare.

Future Directions for mHealth Solutions

In addition to pursuing novel design strategies and data policies that 
are more inclusive and protective of the needs and safety of older adults, 
other mHealth opportunities also abound. For example, prior mHealth 
studies have typically involved small and potentially nonrepresentative 
samples over relatively short periods of time. More rigorous examinations 
are necessary to establish the efficacy of mHealth approaches in adaptive 
aging contexts. Further, existing mHealth systems are often one-off appli-
cations rather than extensible platforms, and implementation is needed of 
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more common-format interoperable systems, including to enable these sorts 
of robust at-scale evaluations. More generally, mHealth’s rapid emergence 
and innovation pace motivate ongoing reexaminations and reflections on 
the field, to continue refining such recommendations.

In addition, despite the collaborative nature of managing the aging 
process, mHealth systems have largely had an exclusive focus on the indi-
vidual, which motivates the development of tools that are aware of and can 
support the social ecologies in which personal health management practices 
take place (Murnane et al., 2018). Relatedly, while personal lifestyle choices 
are key to improving health outcomes, interventions that rest predomi-
nantly on individual-level responsibility will be insufficient for achieving 
large-scale, long-term solutions to many public health issues we face today. 
In addition to user-driven, bottom-up approaches, more population-wide, 
top-down changes are necessary too (e.g., to improve access to healthy food 
choices and well-being-promoting urban infrastructure). mHealth pipelines 
can be instrumental in gathering the sort of evidence necessary to inform 
such institutional-level changes. Similarly, mHealth strategies for large-scale 
measurement can help surface systematic health inequities, for example, 
by using accelerometry data from smartphones to reveal physical activity 
disparities in different cities around the world (Althoff et al., 2017). 

Further, research indicates that older individuals who are from minority 
ethnic groups have lower health and digital literacy, or are marginalized from 
accessing traditional forms of health care may similarly face barriers to using 
personal health care technologies and have different needs and expectations 
for such tools (White et al., 2015). Novel strategies are necessary to bridge 
this gap, such as more accessible education and training, inclusive transitional 
care initiatives, such as ConnectHome (Leeman and Toles, 2019), and em-
powering community organizations with preventive mHealth tools. Another 
emerging inequity relates to algorithmic biases—for example, research has 
demonstrated that user models often encode significant age bias (Diaz et al., 
2018), which will likely require new tactics to identify and address.

Finally, framing technology as an intervention to treat age-related 
changes can portray aging in a negative light and neglect the positive as-
pects of growing older (Durick et al., 2013; Ferri et al., 2017; Nassir et 
al., 2015; Vines et al., 2015). Going forward, we hope to see the design 
of mHealth technology challenge these stereotypes and support a framing of 
flourishing in later life. 
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Use of Technologies for  
Social Connectedness and Well-Being 

and as a Tool for Research Data 
Collection in Older Adults

Karen L. Fingerman,1,2 Kira S. Birditt,3 Debra J. Umberson4

INTRODUCTION AND OVERVIEW

Frequent social connectivity with a variety of social partners is asso
ciated with better psychological well-being and physical health, as well 
as increased longevity (Umberson and Montez, 2010). We can think of 
social connectivity along a spectrum from fully socially engaged to socially 
isolated. Empirical evidence suggests a dose–response association between 
degree of social connection and positive health outcomes (Tanskanen and 
Anttila, 2016); that is, the more social connection, the greater the impact 
on health and well-being. 

Globally, there is increasing concern about trends in social connectivity, 
loneliness, and social isolation (Holt-Lunstad et al., 2017; Klinenberg, 
2016). Indeed, Great Britain established a national commission on lone-
liness to address this concern (Klinenberg, 2016). Prevalence of social 
isolation in the US is difficult to estimate, but demographic trends portend 
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increasing social disconnectedness in the future due to rising rates of child-
lessness, increasing numbers of never married and previously married indi-
viduals, smaller households, and falling community involvement in formal 
groups (Holt-Lunstad et al., 2017). Given population aging, lack of social 
connectivity is likely to become an increasing population concern.

Social networks tend to diminish in size as people age—in part, due 
to retirement and deaths of friends and family, as well as increased physi-
cal frailty and reduced mobility (Klinenberg, 2016). The Pew Research 
Center (2009) reports that social networks have declined by about a third 
in size over the past few decades. Moreover, among older people in the 
United States, men may be more at risk of social isolation than women 
(Klinenberg, 2016), and Black Americans may be more at risk than their 
non-Black counterparts (Umberson et al., 2017). 

A number of public health and research initiatives address the issue 
of social dis/connection in older populations. This chapter addresses how 
different technologies may promote social connection and decrease social 
isolation in late life. We consider two related issues. First, we marshal avail-
able evidence to consider whether and how technologies can be used to 
promote social connection and well-being in older populations. Second, we 
consider how mobile technologies can be used to study social connectivity 
and health linkages in older adults. Social connections are fundamental to 
overall health and well-being throughout life, and mobile technologies may 
provide critical tools for generating and supporting those connections for 
older populations.

INFORMATION AND COMMUNICATION TECHNOLOGIES  
IN LATE LIFE

The term “information and communication technologies” (ICTs) has 
been used to encompass the broad range of these technologies, which 
include smartphones, specialized apps, web-based sites with information 
about health and other topics, social media, videoconferences, voice acti-
vated virtual assistants, and a variety of other applications (see Table 4-1 
for a full listing; Mitzner et al., 2019). Recent national surveys conducted 
by the Pew Research Center reported that nearly three quarters of adults 
over aged 65 used the internet (73%; Anderson et al., 2019), and the 
majority of adults over age 65 have cell phones (91%). 

Older adults lag behind younger age groups in use of many technolo-
gies. For example, most young adults use smartphones (90%) and social 
media (86%). Yet only 40 percent of older adults use smartphones, with 
use declining with age (e.g., 59% of 65 to 69-year-olds compared to 17% 
of adults over age 80), and only a third of older adults use social media 
(34%; Anderson and Perrin, 2017; Anderson et al., 2019). Further, Cotten 
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TABLE 4-1 Types of ICTs and Definitions

Type of 
ICT

Definition Software & 
Devices

Examples

Health Often wearable technology that has the 
ability to inform doctors and other health 
care provides of a patient’s well-being.
Information that can be communicated 
includes heart rate, pulse, blood pressure, 
sleep, step count, etc.

Smart watches Apple Watch, Whoop Fitness Tracker, 
Samsung Watch, FitBit

Measures: heart rate, accelerometer, sleep 
analysis, calories burned,

Smart clothing Levi’s Commuter x Jacquard, Sensoria
Fitness Socks, Nadi X

Measures: heart rate, distance traveled, 
altitude, posture adjustments

Mobile phone 
health apps

Apple Health app, MyFitnessPal, Strava

Measures: step count, distance, heart rate, 
calories burned

Business A category of ICT that is concerned with 
the presentation, preservation, and 
manipulation of data in a workplace or 
classroom.

Word processors Word, Google Docs, Pages

Spreadsheets Excel, Google Sheets

Presentation 
software

Powerpoint, Prezi, Keynote

Communication
meetings

Webex, Zoom, GoToMeeting

Social A type of ICT that facilitates information 
exchange and communication between two 
or more individuals

Social media Instagram, Facebook, Twitter, Snapchat, 
Pinterest

Video messaging Skype, FaceTime

Text messaging Mobile phone apps: Messenger, 
GroupMe, WhatsApp, iMessages

Dating Bumble, Tinder, Match.com

Video sharing YouTube, Tik Tok

Digital assistants Alexa, Siri, Google Home

Transactions Venmo, PayPal, Cash App, mobile 
banking apps

http://www.nap.edu/25878


Mobile Technology for Adaptive Aging: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

70	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

(2017) points out that Pew Research Center data likely overestimate tech-
nology use in old age due to exclusion of older adults who are unlikely to 
use technologies (e.g., those in skilled nursing care or suffering dementias) 
and who are unable to respond to smartphone or web-based surveys. 

Among adults over the age of 65 who use ICTs, facilitation of social 
connection and communication with friends and family are among the most 
prevalent reasons (Cotten et al., 2012; Sims et al., 2017). Several types of 
ICTs may be especially useful in fostering social connection, but older adults 
may use these technologies selectively. For example, older adults may be more 
comfortable placing calls on mobile phones, due to familiarity with phones 
in general. They may be less likely to use smartphones that allow texting or 
apps such as YouTube and Twitter where individuals share information.

Research also suggests that older adults are willing to embrace voice-
activated intelligent assistants (e.g., Alexa; Google assistant; Siri), but it is 
not clear that these assistants improve feelings of social connection (Koon 
et al., 2019). One small study involved semi-structured interviews with 12 
older adults to evaluate their experience with Amazon Echo. Older adults 
were positive overall about the voice-activated assistant for music, weather, 
and information but reported frustrations with social aspects, such as the 
device’s inability to understand their accent or giving the response “I don’t 
know what you mean.” Even adults who mastered tasks that facilitated 
communication with friends or family questioned whether it was more 
useful than the phone (Koons et al., 2019). Thus, the devices may assist 
with practical tasks, but it is not clear whether these technologies assist 
in social connection or that they can substitute for human interactions in 
some situations.

Facilitating Factors and Barriers to Use of ICTs for Social Connection

Many older adults use technologies for social communication, but a 
large proportion do not (Anderson and Perin, 2017; Anderson et al., 2019; 
Hargattai, 2018). These disparities reflect access to resources. Nearly all 
young adults of all socioeconomic backgrounds have access to an array of 
technologies and regularly use ICTs to connect with other people, but for 
older adults, a lack of economic, educational, and social resources may 
place constraints on access to, and effective use of technologies for social 
connection.

Demographic factors associated with technology use in old age include 
advantaged statuses, such as younger age, higher education and income, 
better health, being non-Hispanic White and speaking English (Berkowsky, 
Sharit, and Czaja, 2018), and residing in more urban areas, as opposed to 
rural areas (Findlay and Nies, 2017). For example, a study of 1,700 older 
adults in the Chicago area revealed that income determined ownership 
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and use of a wide array of ICTs (e.g., smartphone, e-reader, tablet; Ihm and 
Hsieh, 2016). Similarly, a convenience sample of 350 older adults in rural 
Idaho (where ICT use is low), revealed that older adults who use social 
networking sites have socioeconomic advantages that contribute to internet 
use (Findlay and Nies, 2017). 

Data regarding factors that determine ICT use in later life are avail-
able from two large national longitudinal studies of older populations. The 
National Health and Aging Trends Study (NHATS) started in 2011 and 
involved nearly 6,500 adults aged 65 and older representative of the US 
older population. Participants answered questions about information and 
communication technology, including having a cell phone or a computer and 
whether the individual has texted, emailed, used the internet, and gone online 
for health information, shopping, etc. in the prior month (Elliot et al., 2013). 
The Health and Retirement Study (HRS) is a large longitudinal national sur-
vey of approximately 20,000 adults over the age of 50 with follow-ups every 
two years starting in 1992. The HRS survey included a single item about use 
of the internet (presumably via a computer) starting in 2002. In 2012, the 
HRS administered a module asking about use of ten types of ICTs, such as 
video chatting, social networks, devices to monitor health, and e-readers or 
tablets to a subset of approximately 1,800 participants (Chopik et al., 2017). 

These studies documented cross-sectional associations between cog-
nitive functioning and use of ICTs in late life. Not surprisingly, better 
cognitive functioning is linked to adoption of a great number of ICTs (in 
the HRS; Chopik et al., 2017) and to use of ICTs for texting or email 
(in the NHATS; Elliot et al., 2013). Furthermore, the design of ICTs may 
present challenges in the face of psychomotor and cognitive changes in late 
life; such designs may limit use of technologies among some older popula-
tions. For example, smartphone apps or other technologies that have the 
potential to facilitate communication in late life may be too complicated for 
many older adults or may require fine motor skills that are too demanding 
(Charness and Boot, 2016). Technical updates and new operating systems 
can also alter the format of technologies after older adults have mastered 
them, and may present barriers to continued utilization. 

Technology use and purpose of use also vary by gender. Data from the 
NHATS revealed that men are more likely to use technologies in general 
and are more likely to use technologies for informational purposes in par-
ticular, whereas older women who use technologies do so to foster social 
engagement (Kim et al., 2017). Consistent with this gender difference, data 
from the HRS documents that women are more likely than men to use 
social networking sites (SNSs) like Facebook (Yu et al., 2016).

In sum, there is a digital divide in older adults’ adoption of technolo-
gies based on structural factors (Fang et al., 2019). Older adults who have 
more resources and better education and cognitive function are more likely 
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to use technologies that may enhance their social connectedness. Gender 
differences complicate these patterns, however, with men more likely to use 
ICTs in general, but women more likely to use technologies specific to com-
munication (e.g., text messaging, SNSs). Other individual factors (e.g., race/
ethnicity) condition ICT use as well. As such, it is not clear which factors 
influence use of these technologies specifically for communication and social 
engagement, although extant data hint that individuals who are advantaged 
with a larger social network are also the ones who are most likely to use 
ICT to connect to social partners. 

Use of Technologies for Communication and Social Connection

A fundamental question in the study of technologies in late life is the 
extent to which older adults who do use these new technologies (e.g., smart-
phone, video conference, social media) do so for communications and social 
connection (for a discussion, see Hulur and McDonald, 2020). Researchers 
suggest that older adults who use technologies for social connection do so 
for two motivations: (a) the complementary use of technologies for com-
munication to supplement and reinforce existing social ties, and (b) the 
compensatory use of technologies for communication to make up for lack 
of social ties and disadvantages (Sims et al., 2017). 

Evidence suggests complementary use of these media. Older adults 
are more likely to use these technologies when their social partners assist 
them and encourage them to do so (Francis et al., 2018). Similarly, older 
adults who wish to use technologies such as SNSs are often motivated by 
a desire to communicate with family members and friends who also use 
these network sites (Charness and Boot, 2016). Social partners may play a 
key role in motivating older adults to use technologies, helping them set up 
and learn to use these technologies, and problem-solving difficulties (i.e., 
“glitches”) that arise. Children, grandchildren, and other younger people 
may assist in using and updating technologies in ways that strengthen older 
adults’ sense of connection to these helpers. 

A study relying on focus groups in the Midwest found that older adults’ 
requests for assistance with ICT generated stronger bonds to family mem-
bers and generated interactions with experts in technology (e.g., customer 
service) outside the older adults’ family (Francis et al., 2018). A clinical 
trial introduced older adults to the internet, social media, and emails in 
a continuous care retirement community (i.e., a single facility with older 
adults residing in independent living units, assisted living units, and skilled 
nursing facilities; Cotten et al., 2017). The study introduced peer teaching 
in promoting ICT use; these peer connections were successful for technol-
ogy adoption because older learners enjoyed learning from an age mate, 
and individuals of similar ages shared experiences.
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Data also support the compensation model. Yu and colleagues (2016) 
suggested that individuals who are widowed or are homemakers may be 
compensating for lack of social networks in their greater use of SNSs. A 
study conducted with a subset of the HRS sample found that older adults 
who live alone benefited more from use of the internet than did older adults 
who resided with others (Cotten et al., 2014). Likewise, a growing number 
of older adults use dating websites to find new romantic partners (Davis 
and Fingerman, 2016; Griffin and Fingerman, 2018). 

Many studies have focused on use of SNSs such as Facebook in old age. 
In addition to constraints on use of technologies in general, barriers to use 
of SNSs include older adults’ concerns about privacy, fear of identity theft, 
and perceived lack of security that may be specific to social media (Bixter et 
al., 2019; Hutto et al., 2015). Nevertheless, many older adults do use SNSs. 
According to a Pew Research Center survey, 46 percent of older adults 
reported use of Facebook in 2019 (Perrin and Anderson, 2019). It is not 
clear that older adults use Facebook in the same manner as younger adults, 
however. A cross-sectional nationally representative study of 1,000 adults 
aged 18 to 93 revealed age differences in Facebook networks. Compared 
with younger adults, older adults reported smaller Facebook friend net-
works, but a greater proportion of actual friends (i.e., also friends outside 
of Facebook; Chang et al., 2015). That is, older adults who use Facebook 
do so to engage with people they already know. In sum, ICTs, including 
social media, have the potential to help retain and reinforce existing sup-
portive ties and also have the potential to generate new social connections.

SOCIAL USE OF TECHNOLOGIES AND WELL-BEING IN LATE LIFE

Researchers are particularly interested in whether ICTs can be used for 
social connection to improve social engagement, social isolation, loneliness, 
depressive symptoms and depression, life satisfaction, and physical well-
being. To date, many studies have documented benefits of different forms 
of ICT use on these outcomes (Cotten et al., 2012, 2014; Heo et al., 2015). 
In documenting these associations, however, the majority of research has 
relied on cross-sectional data, with only a few studies using longitudinal 
data. Moreover, one study of 92 adults over the age of 50 found that intro
ducing tablets increased (rather than decreased) loneliness (Pauly et al., 
2019), perhaps due to social comparisons that arise via SNSs. 

On the whole, however, adults seem to benefit from use of ICTs. 
Reciprocally, older adults with better well-being may be more motivated 
to use technologies. Data from the HRS (i.e., 2006, 2008 or 2012 waves 
of data) revealed that internet use was associated with fewer symptoms of 
depression cross-sectionally and longitudinally (Cotten et al., 2012, 2014). 
Chopik (2016) examined cross-sectional data from the HRS and linked use 
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of social technologies (e.g., email, SNS, online video/phone calls, online 
chatting/instant messaging, smartphone usage) to a variety of positive out-
comes (e.g., reduced loneliness, better life satisfaction, fewer chronic condi-
tions, better health). These associations are also evident among adults in 
very late life. Sims et al. (2017) recruited a nationally representative sample 
of 445 adults over age 80. Older adults reported their use of 16 technolo-
gies (e.g., online banking, video games, digital books, fitness trackers, email, 
video calls). Using more devices or apps was positively associated with feel-
ing connected to loved ones and life satisfaction and negatively associated 
with loneliness and functional limitations. Furthermore, use of ICTs for 
social connection was associated with less loneliness and better psychologi-
cal well-being, above and beyond the number of devices.

Longitudinal studies have also confirmed the direction of these asso-
ciations over time. Cotten and colleagues examined ratings of internet use 
from 2002 to 2008 in the HRS. Controlling for prior depression and prior 
internet use, they found that internet use reduced the probability of a future 
depressive state by about 33%. Likewise, Szabo and colleagues (2019) 
studied over 1,000 New Zealand adults aged 60 to 77 and assessed three 
purposes for online engagement: social (e.g., engaging with friends/family), 
instrumental (e.g., banking), and informational (e.g., health information). 
Over four years, from 2013 to 2016, use of technologies for social purposes 
was associated with decreased loneliness and increased social engagement, 
which in turn were associated with better psychological well-being. 

The literature has also focused more specifically on benefits of using 
SNSs. The Georgia Tech Home Lab study provided detailed information 
regarding Facebook use. This cross-sectional convenience study included 
142 volunteer participants over the age of 50 who completed a brief survey 
of social media use (e.g., Skype and Facebook) and traditional communica-
tion media (e.g., phone, face-to-face, letter). Bell et al. (2013) analyzed these 
data and found that older adults who used Facebook were more satisfied 
with their social lives than older adults who did not use Facebook, but they 
were not less lonely.

Individuals use SNSs in several ways, but three types of behaviors stand 
out: (a) social communication directed at specific individuals, (b) broadcast 
communications to the broader network, and (c) passive consumption of 
social partners’ posts. Hutto and colleagues (2015) also drew on the conve-
nience sample in the Georgia Tech Home Lab to show that older adults who 
engaged in directed communications via SNSs (as opposed to broadcast and 
passive communications) were less lonely and more satisfied with their lives. 

National data may tell a different story about Facebook use and well-
being in adulthood. Shakya and Christakis (2017) conducted a longitudinal 
study of US households using three waves of Gallup’s web-based polling data 
(2013 to 2015). The survey asked about the people that participants could 
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confide in or spend time with (referred to as “real world” social networks). 
Participants also provided the researchers access to their Facebook accounts. 
Notably, the study by definition excluded adults who did not use Facebook 
(i.e., over half of older adults). The researchers examined the number of 
Facebook friends, the number of times participants “liked” someone else’s 
content, clicked on links posted by friends, and updated their own status 
on Facebook. Cross-sectional and prospective analyses revealed that real-
world social connections were associated with better self-rated psychological 
health, life satisfaction, and physical health. Facebook behaviors (e.g., lik-
ing another’s content and clicking links posted by friends) were associated 
with poorer well-being. Furthermore, the negative effects of Facebook were 
comparable or greater than the positive effects of having real-world social 
connections. This study did not provide analyses by age, and future research 
is necessary to disentangle these patterns in older populations. 

In sum, ICTs may not substitute for face-to-face social contact and 
connection but may provide older people with opportunities to connect to 
the social world virtually. Additional research is necessary to understand 
how phone use, texting, video conferencing, and other one-to-one social 
connections via ICT might be beneficial in the absence of other face-to-face 
connection.

INTERVENTIONS TO IMPROVE SOCIAL CONNECTION  
VIA ICT USE

Given the number of devices available to facilitate communication 
easily and inexpensively, interventions to mitigate social isolation and im-
prove social connectedness in late life are tenable. For example, the World 
Health Organization recently launched a digital application (or app) to 
provide healthcare and social workers resources necessary to reduce social 
isolation in late life (Chaib, 2019). 

Randomized controlled studies of interventions have begun to examine 
ICT use to alleviate social distress or promote social connection. A syn-
thesis of this literature is limited because studies use different definitions 
of social involvement, vary in ICTs examined, and may not include long-
term follow-up. Likewise, some intervention studies intended to enhance 
social connection via ICTs have relied on small samples, qualitative data, 
or demonstration projects. Furthermore, because these interventions typi-
cally target older adults who are not familiar with the technologies, the 
intervention must include training elements. Training may introduce social 
contacts that are difficult to account for in assessments of the intervention 
(Shillair et al., 2015). 

Intervention studies with control groups present convincing findings 
regarding the benefits of ICT use. Shillair and colleagues (2015) conducted 
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a randomized controlled trial (RCT) introducing laptop computers and 
internet access to improve loneliness and social isolation. The study drew 
on a convenience sample residing in assisted living and independent living 
communities. The intervention occurred over 8 weeks and involved training 
on laptop computers. The study also included a placebo group (received 
the same number of sessions with the trainers, but no ICT use) and a true 
control (no ICT/no placebo training). The effects of the ICTs on life satis-
faction over time (3 months, 6 months, 12 months) depended on attitudes 
toward ICT use (Tsai et al., 2019). Older adults who grew more confident 
about using ICTs to communicate also felt more socially supported, and 
their overall life satisfaction grew higher over time (Shillair et al., 2015). As 
such, introduction of ICTs is not a panacea, but rather depends on training 
and time for the person to become comfortable with these technologies. 

Another intervention, the Personal Reminder Information Social Man-
agement System (PRISM) study recruited 300 volunteers over the age of 65 
residing independently in the community. The intervention provided partici-
pants with a mini desktop PC with free internet access, a printer, and free 
access to the internet, including a calendar, photo feature, emails, and online 
help. The email feature included a “buddy tab” intended to foster social 
connections between study participants. A control group received similar 
information in a binder with opportunities to form connections to other 
participants by sharing their phone number and interests with other par-
ticipants in their group. At 6 months postrandomization, participants in 
the PRISM condition showed greater improvements in ratings of loneliness 
and social support than the binder group, but these differences disappeared 
at 12 months postrandomization when both groups showed improvements 
(Czaja et al., 2018). Although these intervention studies point in the direction 
of benefits from technology for social involvement, some smaller studies have 
shown opposite effects of using social functions on portable ICTs, perhaps 
due to feelings of exclusion that increase loneliness (Pauly et al., 2019). 

Finally, older adults’ social lives typically involve enclaves of social 
partners who have long histories of interactions, who are educationally 
similar, and who share cultural backgrounds (McPherson et al., 2001). 
As such, older adults who do not use technologies are likely to have older 
friends and relatives who do not use technologies for communication. Inter
ventions that target one older adult may be ineffective in the absence of 
including the broader social circle. 

USING MOBILE TECHNOLOGIES IN RESEARCH 
ON SOCIAL CONNECTIVITY

Although the literature regarding older adults’ use of mobile technology 
has focused broadly on ICTs, researchers have specifically used mobile tech-
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nologies to examine older adults’ social lives. Using mobile technologies, 
scholars have generated self-reports of activities and mood throughout the 
day, observations of conversations, location, and activity level, and links 
between daily social connections and well-being outcomes. 

Self-Reported Social Connectivity via Mobile Devices

Studies of older adults’ social lives have used daily diary methods to 
assess self-reported social interactions throughout the day (see Table 4-2 for 
types of measurement and definitions). Many of those studies (e.g., Birditt, 
2013) have relied on telephone interviews at the end of the day, without 
placing demands on older adults to utilize technologies. 

Other studies have used ecological momentary assessments (EMAs; sur-
veys that participants complete at intervals throughout the day as they go 
about their daily life) relying on smartphones preprogrammed specifically 
for that study, and sometimes including less-educated older adults by pro-
viding training and instruction, and technical support follow-ups (Birditt 
et al., 2018; Fingerman et al., 2020). These methods, by which individuals 
report on their social connections multiple times a day, shed light on social 
interactions and how such interactions contribute to health and well-being. 
These methods can provide insights into the temporal sequencing of events 
and help identify potential mechanisms linking social connectivity and 
health or well-being. For example, Birditt et al. (2018) assessed older adults 
aged 65 and older every three hours for 5 to 6 days, and found that older 
adults rarely reported social isolation (defined as no contact via face-to-
face, telephone, or electronically for three consecutive hours). 

TABLE 4-2 Mobile Assessments and Definitions

Type Definition 

Self-reported 
Daily diary Surveys completed once a day
Ecological momentary assessment Surveys completed multiple times a day 
Interval-based assessments Surveys arrive at set times

Event based Surveys completed when particular events occur
Random Surveys arrive at random times

Observational 
Mobile phone logs Logs of text messages and phone calls
GPS Location information 

Electronically Activated Recorder (EAR ) App that records snippets of sound at random intervals
Blue tooth Used to assess size of social groups and connection

Measures of health 

Ambulatory blood pressure and heart rate Assesses blood pressure and heart rate randomly or at set 
intervals

Accelerometers Measures acceleration. When sleeping is referred to as 
actigraphy. 

TABLE 4-2 Mobile Assessments and Definitions

Type Definition 

Self-reported 
Daily diary Surveys completed once a day
Ecological momentary assessment Surveys completed multiple times a day 
Interval-based assessments Surveys arrive at set times
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Observational 
Mobile phone logs Logs of text messages and phone calls
GPS Location information 

Electronically Activated Recorder (EAR ) App that records snippets of sound at random intervals
Blue tooth Used to assess size of social groups and connection

Measures of health 

Ambulatory blood pressure and heart rate Assesses blood pressure and heart rate randomly or at set 
intervals

Accelerometers Measures acceleration. When sleeping is referred to as 
actigraphy. 
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Researchers have also used a variety of ambulatory devices to measure 
associations between social interactions and health indicators, including 
physical activity, sleep, heart rate, and blood pressure, throughout the day. 
These studies provide insights into the mechanisms linking social connec-
tions and health. Our recent research identified associations between social 
integration, daily activities, and physical activity in late life using Ecological 
Momentary Assessments on handheld Android devices—supplemented by 
objective indicators of physical activity measured with Actical accelerom-
eters (Fingerman et al., 2019). We found that connecting with a wider 
variety of social partners was associated with greater physical activity and 
better mood. Social connections and relationship quality are also associ-
ated with sleep duration and quality as measured with actigraphs. Cross-
sectional research using the National Social Life Health and Aging (NSHAP) 
data (individuals aged 57 to 85) have focused on sleep and marital quality 
using actigraph/accelerometer (Chen et al., 2014). Likewise, researchers 
have examined daily social interactions and ambulatory blood pressure in 
younger adults but have often not examined older adults (Cornelius et al., 
2019). Overall, these studies show that mobile technology can be used to 
assess many facets of social connection and health and allow examination 
of temporal links between social ties and health outcomes as they unfold. 

Observational Studies of Social Connectivity 

Observational studies use smartphone technology to obtain informa-
tion regarding types of communication, geographic location, and recordings 
of the natural environment. Mobile devices can be used to assess proxim-
ity to social partners using Bluetooth data to determine the strength of the 
connection between individuals (Boonstra et al., 2015) or the size of social 
groups (Chen et al., 2014). Researchers can also use the GPS data from 
mobile devices to assess the geographical location of respondents, includ-
ing distance from home. A study of older adults found that time spent out 
of the house (measured with GPS) was associated with exercise and social 
activities (York and Cagney, 2017). 

Another mobile device, the Electronically Activated Recorder (EAR) 
records participants’ utterances as they occur in the natural environment 
(Mehl, 2017). Studies have shown that the EAR provides unique predictive 
information beyond self-report. The EAR device can also be used to track 
human behaviors that are less conscious, including sighing, swearing, and 
laughing, as well as emotional tone, all of which can provide important 
information about mental and physical health. The EAR device may also 
provide information about the effects of early-stage cognitive impairments 
and the effects of hearing loss on conversation and social engagement, but 
has not been used specifically in these contexts. 
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CONCLUSION

Social networks become smaller as people age, and older people are 
more likely than their younger counterparts to report feeling lonely and 
socially isolated (Kemperman et al., 2019). ICT use in older populations 
offers great promise for fostering social connection. The use of mobile 
technologies to gather data on the social connectivity of older people in 
relation to their health and well-being can lay groundwork for effective 
policies and practice strategies to enhance social connection. However, the 
limitations of such strategies must also be considered by recognizing that 
mobile technologies may not always be effective substitutes for in-person 
social contact. Below, we briefly review several major themes in the current 
research evidence on mobile technology use and social connectivity with 
older populations and identify strategic directions for future research.

The first major theme concerns the need for additional research on 
information and communication technologies and social connection among 
older adults. Today’s older people grew up in an era devoid of such tech-
nologies, and thus opportunities, constraints, and rewards of information 
and communication technologies are highly likely to differ for younger and 
older age cohorts. Use of technology has largely saturated younger cohorts, 
whereas there are sizable discrepancies in use of technologies in late life. 
Older adults who are well off typically use new technologies, whereas those 
who are less well off typically do not (Hargittai, 2018). These discrepancies 
reflect education and resources; older adults who have greater access and 
knowledge are more likely to adopt these technologies. Moreover, Black 
and Hispanic Americans are less likely to have broadband connections 
at home, which reduces the usefulness of ICTs (and the potential human 
capital they are associated with) and may lead to disparities. 

Other disparities reflect social resources. Individuals who are more 
socially engaged and socially connected through family and friends are also 
more likely to have social partners who provide them with technologies, 
provide instruction in usage, and serve as targets for connection through 
SNSs (e.g., Facebook). Further, women are more likely than men to use 
technology for social networking (Kim et al., 2017). 

Second, current research evidence on the use of and benefits from ICT 
is limited because many studies rely on small samples and cross-sectional 
designs. These approaches reflect the challenges of defining sampling in 
older adults. It is highly likely that the use of mobile technologies for social 
connection are affected by the mental, physical, and cognitive status of 
people as they age, and disentangling these factors in research is complex. 
Studies that have used national samples with longitudinal data suggest that 
ICT use in late life is beneficial (e.g., Cotten, et al., 2014). Nevertheless, 
much of this research is limited to two national datasets (NHATS, HRS), 
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both of which have limited items addressing ICT use. Substantial invest-
ment is required to execute studies that draw on multiple items and multiple 
methods to assess social connection and use of technologies over time. 

Third, given the growing burden of dementia in aging societies, there 
is a pressing need for research examining interventions to increase the use 
of ICTs to foster social connectivity. Interventions and programs using such 
technologies may be particularly important to assist people with cognitive 
impairment and their caregivers. Nevertheless, early intervention studies on 
how technologies can alleviate caregiver burden have had limited success, 
and the costs of the technologies outweighed the benefits. Relatively low 
cost technologies, such as GPS, may assist caregivers to locate persons with 
dementia who tend to wander, though the ethics of using such devices has 
also been questioned (Mahoney and Mahoney, 2010). Future intervention 
research might focus on the feasibility, ethics, and dissemination of these 
existing low-cost technologies. 

In this chapter, we discussed several ways in which ICTs intersect 
with the well-being of older populations: (a) older people’s use of ICTs with 
regard to social connection, (b) factors that facilitate or set up barriers for 
the use of such technologies, (c) the impact of using these technologies 
for social connection to improve well-being in late life, (d) interventions to 
increase social connectivity via adoptions of ICTs, and (e) research applica-
tions using mobile technologies. ICTs offer many opportunities to enhance 
feelings of social connection among older populations, and to promote their 
well-being. ICTs may also confer benefits outside of promoting social con-
nection, such as health monitoring, banking, and other daily tasks. Future 
research should consider the potential costs and benefits across ICTs used 
by older people, with close attention to the purpose and consequences of 
different types of ICTs. As future cohorts grow older, the use of ICTs for 
social connection in late life may continue to grow.
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Using Machine Learning to Forecast 
and Improve Clinical Outcomes and 

Healthy Aging Using Sensor Data
Alvin Rajkomar1

INTRODUCTION

Our understanding of health and aging comes from snapshots of mea-
surements collected in healthcare settings, such as yearly blood testing for 
glucose, or responses to antidepressants measured episodically every few 
months by a clinician. Yet the vast majority of people’s daily experiences 
unfold outside the eyes of the healthcare system, leaving habits, dietary 
choices, sleep, environmental, and social exposures unmeasured, along 
with important outcomes that are hard to collect with a questionnaire in 
a physician’s office, such as daily perception of how they feel, functional 
independence, and emotional state. 

By analyzing real time locations and speeds of cars, apps can automati-
cally detect traffic and re-route you to your destination to arrive sooner. 
It seems natural that if a system could collect lifestyle habits of millions 
of people through ubiquitous sensors, such as those in cell phones, and 
follow what happened to them—whether they developed diseases or dis-
ability—then it could direct people how to live better to reduce the risk of 
diabetes or to inform how we can promote an aging parent to live safely 
at home, effectively re-routing their life to a longer, independent life. At a 
high level, we are all on the same journey of aging, and while young we 
generally rebound back to our expected levels of functioning after illness, 
accidents, or life-events, but as we age, we lose our ability to return to our 

1 Google LLC, Mountain View, California. Address correspondence to: alvinrajkomar@
google.com.
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prior function after increasingly small stressors and physiological insults 
(Clegg et al., 2013). Finding the path that maintains health and robustness 
of individuals and populations is therefore a universal need.

However, the optimism that large data sets and complex data analysis 
can help us learn personalized insights to optimize our way of living to 
promote personal betterment or graceful aging must be tempered with the 
humility that this endeavor is exceedingly difficult. 

The amount of data collected from individual participants in trials 
already exceeds the ability of a human expert clinician to review, evaluate, 
and interpret, and machine intelligence plays a pivotal role for analysis. 
The question is how can researchers thoughtfully apply best practices in 
machine learning (ML) and clinical research as they use data to forecast 
progression of aging and clinical trajectories and identify ways to improve 
patient outcomes.

This chapter will begin by reviewing the core aspects that constitute an 
ML system: input data, desired outputs, and generation of training and test 
data. Following this review, the chapter will discuss ways in which ML can 
be applied to sensor data gathered in clinical trial settings as a means of 
identifying potential outcomes, forecasting health trajectories, and develop-
ing interventions to improve health for older adults. 

MACHINE LEARNING CONSIDERATIONS

Overview of Machine Learning

The details of ML were recently summarized (Rajkomar, Dean, and 
Kohane, 2019). This chapter will focus on the most commonly used type 
of ML, referred to as supervised ML. While supervised ML is featured here, 
other types of ML have been used for proof-of-concepts (Fisher et al., 2019) 
and show promising results. 

Supervised ML differs from traditional computer programs, which are 
written by software engineers who specify the step-by-step computations 
of transforming input data (called features) to output data (called labels). 
For example, to use the weight and height of a patient (features, or input 
data) to calculate the body mass index (BMI; a label, or output), a computer 
program can be written to perform the known calculation of BMI = weight/
height (Clegg et al., 2013). In supervised ML, rather than providing the for-
mula, the programmer simply gives these algorithms examples of patients 
with known weights, heights, and BMIs, and specific algorithms designed to 
learn from examples are used to build an ML model that predicts the BMIs 
for combinations of height and weight that were never seen in the initial set 
of examples provided. While ML would be a poor choice to determine BMI 
calculations from the weight and height since the relationship is known 
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ahead of time, it can be useful when the association is hard or impossible 
to specify by hand, such as using a digital picture of a person (features) to 
classify his or her BMI (label).

In medicine, ML models have been used to automate analysis of medi-
cal images, such as using eye fundus images (features) to diagnose diabetic 
retinopathy (labels; Gulshan et al., 2016) or using the sequence of data in a 
medical record (features) to predict patient outcomes, such as whether they 
are readmitted to the hospital (label; Rajkomar et al., 2018). Consented 
collection of digital data from patients during their daily life from wearable 
or ambient sensors can be used as input (features; Perez et al., 2019) for a 
variety of prediction tasks, such as onset of cognitive decline or worsened 
mobility (labels), which will be discussed in further detail below.

Input Data

Types of Sensors

The ubiquity of low-cost, miniature, and novel sensors allows for the 
collection of data that were previously too expensive or inconvenient to 
collect at scale. There is inconsistent terminology to categorize these sen-
sors; some authors use the term “wearable” to emphasize the form factor 
and ease of collection, others use mobile health to highlight connection to 
a sensor carried in a mobile phone. However, data can be collected with 
sensors embedded in the environment (e.g., cameras or pressure sensors 
under a mattress to detect movement) that are similar to data collected 
with sensors worn on the body. This chapter considers the type of sensors 
that would detect data from daily living under proper consent regardless of 
whether they are wearable or ambient and refers to them as sensors despite 
the imprecision of this name.

Table 5-1 lists common sensors that are currently available commer-
cially or in research devices that measure a host of signals, such as electri-
cal signals (i.e., for electrocardiograms), acceleration/orientation (e.g., for 
movement), temperature, or audio (Heikenfeld et al., 2018; Mohr, Zhang, 
and Schueller, 2017; Ray et al., 2019). There are also a wide class of 
biosensors that use biological elements in the sensor itself (e.g., enzymes, 
cell receptors) that can be measured from the eye, mouth, skin, and more, 
although these are generally not commercially available and will not be 
discussed at length in this manuscript (Kim et al., 2019). 

For ML, a key point is that the sensor data produce a raw signal that 
often undergoes further processing before outputting a human-understand-
able reading. For example, a photoplethysmographic sensor often outputs 
many readings of the heart rate that are averaged together in a process that 
produces a “final” reading periodically. The final reading is then fed into 
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TABLE 5-1 Selected Types of Sensors that Collect Data Outside Healthcare Settings

Category of Measurement Examples of 

Specific Sensors

Examples of 

Measurements

Derived 

Measurements

Data measured from wearable sensors

Inertia Accelerometer, 

gyroscope, 

magnetometer

Linear and angular 

motion

Types of activity 

(e.g., walking), 

step length, falls

Light transmittance 

through skin

Photoplethysmo- 

graphic (PPG)

Oxygen saturation, 

heart rate, heart 

rate variability

Measurements of 

cardiovascular 

health

Electrical activity Electrodes Electrocardiograms 

(EKG), 

electroencephalogr

ams (EEG), 

Galvanic skin 

responses

Heart rhythms, 

sleep states,

emotional state

Mechanical movements Piezoelectric 

sensors

Pulsations on skin 

from heart beats
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Chemical analytes on skin Potentiometric and 

amperometric 

sensors

Glucose, lactate, 

sodium 

measurements in 

sweat

Temperature Thermistor Body temperature Elevated risk of 

infection (Abbasi, 

2017)

Location Global position 

satellite 

measurements

Movement Location entropy 

to indicate 

depression

Measurements from ambient sources

Video Cameras Pixels Activity

classification in the 

home, vital signs 

(Prakash and 

Tucker, 2018), gait

Audio Microphones Waveforms Respiratory status 

from breath 
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sounds, emotion 

from voice

Interactions with 

computing devices

Smartphones, 

Tablets, Keyboards

Patterns of typing 

and scrolling

Fine motor control 

that tracks 

development of 

Alzheimer disease 

(Kourtis et al., 

2019), digital 

phenotypes for 

psychiatric 

diseases (Insel, 

2017)

Smart devices Smart pill caps How often 

medication bottles 

are opened

Medication 

adherence

NOTE: These sensors can be used passively or actively, depending on the clinical application. 

an ML model. The details of this preprocessing done prior to the output 
of a visible sensor “reading” are idiosyncratic to a manufacturer, and these 
idiosyncracies are on top of the known issue that sensor data from the 
same type of device but different manufacturers are not equally accurate. 
Variations in sensor quality and sensor-data processing make validation and 
comparability of readings across all devices used in a study critical (Wang 
et al., 2017). 

Active versus Passive Data Collection

Sensors commonly collect data passively, meaning a person is not 
actively engaging with the sensor as they go about their day (Sim, 2019). 
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For example, simply carrying a smartphone is sufficient for accelerometers, 
barometers, and GPS sensors to track activity and movement. Passive 
sensing generates a sequence of measurements of variable duration and 
therefore length, and ML models specific to dealing with sequences exist to 
model this type of data. 

Use of passive sensor data is likely more suitable for aging populations 
who may not wish to actively engage with devices, have difficulty using 
them, or are less comfortable performing active assessments themselves. 

Sensors can also be intentionally engaged for active or functional assess
ment, such as performing a 6-minute walk test by carrying a phone; in this 
case, data collection would require the user to actively indicate the begin-
ning and end of the test (even though the phone is also passively tracking 
movement as well). The active engagement might be triggered by a sensor 
reading, as when a user’s wristwatch sensor detects an arrhythmia and so 
prompts the user to report whether they are experiencing any symptoms 
of atrial fibrillation. Because active data collection like time exertion and 
electronic patient-reported outcomes is done under more controlled settings 
or with specific prompts than passive data collection throughout the day, 
the generated sensor data have less variation, and models can potentially be 
built with fewer data. 

Outputs of a Model

A supervised ML model is trained to associate a sequence of sensor 
measurements with a specific output (i.e., label), and the output is inti-
mately tied to the clinical purpose of the model. This section describes attri-
butes of outputs from a machine learning and clinical research perspective.  

Detection, Classification, and Prediction Machine Learning Outcomes

In traditional research, the output is called the primary outcome, and 
it is typically assessed at the end of a prespecified follow-up period. As 
shown in Figure 5-1, with sensor data, “output” can refer to several things. 
It can designate a measurement of the sensor data (detection); a secondary 
measurement made while sensor data are actively being collected (classifica-
tion); or an outcome that will occur in the future (prediction). 

Consider a wearable sensor that produces an electrocardiogram. A 
model could be used to detect if the recorded electrical pattern is consistent 
with atrial fibrillation. If the user is prompted to indicate their emotional 
state of anxiety at the time of an elevated heart rate, a model could use 
the same sensor to classify emotional state. A model could also predict if 
a patient, currently in sinus rhythm, will develop atrial fibrillation in the 
future (Attia et al., 2019). 
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FIGURE 5-1  Common label types for sensor data. Typically, a sequence of data points are 
measured over time and machine learning models can associate this input with a variety of 
labels. If the sensor itself measures the outcome, such as heart rate monitor detecting abnormal 
rhythms to detect possible atrial fibrillation, then the label is referred to as a detection label. 
Other studies may use a secondary source of data collection, such as a validated questionnaire 
on depression severity, which creates labels that are referred to as classification labels. Labels 
collected from subsequent activity from either the sensor or a secondary source are referred to 
as prediction labels. The literature does not use these terms consistently, but they are helpful 
to create a framework for the types of outputs of ML models.

While it is important that input data, whether passively or actively 
collected, be collected over representative populations, it is critical that 
labels, whether they are detections, classifications, or predictions, be of high 
quality compared to a reference standard. Reference standards themselves 
often require subjective clinical judgment, which may require multiple 
expert raters to reduce the intra- and inter-rater variability (Liu et al., 
2019). Sensor data have the additional challenge of being extremely long, 
and annotating every segment of data may be infeasible; additional tech-
niques may be necessary to coarsely tag parts of the sequence that require 
precise labeling (Yeung et al., 2019). 

Detection and classification have numerous uses for aging populations, 
such as detecting abnormal vital signs or classifying activity (e.g., getting 
out of a chair) as indicative of frailty. Trends of classification, such as 
decreased activity or movement, can be used for direct clinical management 
(e.g., identification of worsening heart failure) or used as an interpretable 
feature and input of another ML model to predict admission to the hospital.

Prediction is critical to enable healthy aging because one of the most 
problematic expressions of aging is frailty, which has not been shown to 
be reversible (Clegg et al., 2013). Identifying patients who will become 
frail before they actually do is the critical first step to delaying or averting 
its onset. However, since frailty is a progressive clinical condition across 
a variety of age- and disease-related changes, even detection of the initial 
stages of frailty is a form of prediction, highlighting the related nature of 
detection, classification, and prediction. However, as noted below, predict-
ing the future does not mean it is possible to change it.
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Clinically Applicable Outcomes

A commonly described label is “onset of a disease state,” so that pa-
tients and their clinicians can be alerted early of an impending condition 
and take preventive action. For example, a continuous glucose monitor 
might be used to predict onset of diabetes within 3 years. Related exten-
sions include detecting or predicting worsening of disease (e.g., automatic 
monitoring of daily tremor activity in patients with parkinsonism or predic-
tion of manic episodes) and identifying patients who have specific subtypes 
of a disease and so may have a different expected trajectory or respond to 
different management. 

For all outcomes, it is critical to distinguish hard versus surrogate end-
points. Hard, or clinical, endpoints, like survival or clinically noticeable 
change of how patients feel or function, are of true interest to patients and 
investigators, although these labels may be difficult or time consuming to 
collect for large groups of patients. Surrogate outcomes are laboratory or 
sensor measurements that are thought to be correlated with hard endpoints, 
such as detection of atrial fibrillation, which is strongly associated with 
stroke. However, it is well known in clinical research that successful pre-
diction of surrogate endpoints is not guaranteed to lead to better hard out-
comes, and in many cases, it can lead to worse or unintended consequences 
(Mandl and Manrai, 2019; Prasad et al., 2015; Weintraub, Lüscher, and 
Pocock, 2015). 

Cohort Selection as It Relates to Outcomes

ML research traditionally focuses on defining input features and output 
labels, but for clinical applications, the population of patients for whom 
data and outcomes are collected—referred to here as the cohort—is equally 
significant but doesn’t always register in the input features. 

ML models are more accurate when trained on data with high propor-
tions of positive labels; in clinical research this corresponds to the percentage 
of enrolled patients who meet the definition of the primary outcome. While 
that can be modulated by selection of the output of interest (e.g., detecting a 
commonly seen surrogate outcome versus predicting a rare hard endpoint), 
it is also affected by the patient population studied, or the cohort.

This effect is so pronounced that in clinical research, the cohort of 
enrolled patients determines the classification of the study itself. Consider 
building a model to predict the increase of a patient’s hemoglobin A1c 
(label), a marker of diabetes, using consented activity and heart rate moni-
toring. If healthy patients are enrolled, the model becomes a risk biomarker 
(risk of disease), but if the patients already have diabetes, it becomes a 
monitoring biomarker (monitoring of known disease), and if the patient is 
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on treatment, it becomes a pharmacodynamic response biomarker (predict-
ing treatment response). 

From an ML perspective, these differences do not affect how a model 
is constructed, trained, or evaluated. But there are significant clinical impli
cations as to whether the model is appropriate to use for various clinical 
populations. In addition to the cohort’s effect on the rate of positive labels 
and clinical generalizability, the type of data collection itself may induce 
selection bias into the cohort. Patients who are willing to wear, charge, 
update, and maintain sensor equipment over long periods of time may not 
reflect the age or socioeconomic status of a population of interest (Hicks et 
al., 2019). In particular, aging populations may worry that they do not have 
the competence to operate technology, that abnormal readings may induce 
health anxiety, or that the technology may be used to displace in-person 
monitoring and care (Sanders et al., 2012). Therefore, understanding the 
cohort and possible sources of bias is a critical step before building any ML 
model, especially related to aging populations.

CLINICAL STUDY CONSIDERATIONS

There are often high-level objectives for using sensor data, such as pro-
moting healthy lifestyles and healthy aging to avert the onset of preventable 
diseases and enable seniors to continue living independently at home. Yet 
achieving these goals with sensor data and ML requires considerations of 
the clinical study nuances in addition to enrolling large cohorts of patients, 
recording high-quality input data, and obtaining adjudicated outcomes 
(Mohr, Zhang, and Schueller, 2017). 

What Is the Right Label?

Applying ML to clinical data gathered by sensors requires consented, 
discrete, measurable, and reproducible labels that may not always be pos-
sible or easy to obtain in widespread populations. Hard endpoints like 
cognitive decline or death may take decades to occur, and clinical outcomes, 
like diagnosis, require regular clinical assessments that are not uniformly 
rigorous or applied across a population. There is a tendency to use surro-
gate endpoints related to specific sensor measurements that are known to be 
correlated to health outcomes, such as blood pressure or glucose levels. It is 
assumed that accurate detection or prediction of these metrics will lead to 
better health, especially if the metrics are related to modifiable factors (e.g., 
exercise or better diet). However, there are multiple examples in healthcare 
where successful interventions to achieve surrogate outcomes of reduced 
arrhythmia burden, hypertension, and hyperglycemia, led to worse patient 
outcomes, as shown below in Table 5-2.
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TABLE 5-2 Case Studies Where Surrogate Outcomes Were Misleading

Outcome Example

Arrhythmia Myocardial infarctions, or heart attacks, can leave a patient’s heart

vulnerable to unexpected, abnormal rhythms that manifest as sudden cardiac 

death. At the end of the 20th century, pharmacologists developed 

antiarrhythmic therapies that successfully suppressed these rhythms and 

physicians routinely prescribed them to patients after myocardial infarctions 

(Pfeffer and McMurray, 2016). In the 1980s, the Cardiac Antiarrhythmic 

Suppression Trial was started to assess the safety of this practice, but 

enrollment was slow because cardiologists refused to let their own patients 

participate since there was clear evidence that the medications effectively

suppressed abnormal rhythms, and the link to sudden death was therefore

patently obvious (Moyé and Tita, 2002). The results of the completed trials 

shocked the medical community: treating the abnormal rhythms was 

associated with increased mortality, forcing a rapid change in the standard of

care and highlighting the dangers of using surrogate measures rather than

clinical outcomes to assess the utility and safety of interventions (Pfeffer and 

McMurray, 2016).

Blood

Pressure

High blood pressure, or hypertension, is a common and leading factor of 

death and cardiovascular disease, and lifestyle and pharmacologic treatments 

are recommended nearly universally to hypertensive patients (Taler, 2018). 

It seems obvious that drugs that reduce blood pressure should similarly lead
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to beneficial effects on mortality and heart attacks. However, in the early 

2000s, a pivotal trial pitted atenolol—one of the most widely used 

antihypertensives at the time—against a new medication, losartan (Dahlöf et 

al., 2002). Both led to similar reductions in blood pressure, but losartan was 

better at preventing death and cardiovascular outcomes. In fact, a later study 

revealed a deeper truth: although atenolol clearly lowered blood pressure, it 

“did not result in a beneficial effect on mortality or myocardial infarction” 

(Carlberg, Samuelsson, and Lindholm, 2004). This experience highlights that 

an intervention of an effective surrogate outcome does not guarantee clinical 

benefit.

Blood

Glucose

High blood sugar, one of the hallmarks of diabetes, is associated with a host 

of deleterious health effects, such as risk of infection, impaired wound 

healing, mitochondrial injury, oxidant injury, and more (Kavanaugh and 

McCowen, 2010). In the early 2000s, these physiological effects together

with observational and clinical trial data which suggested that patients with

higher blood sugar had worse outcomes led to widespread adoption of tight 

blood sugar control in intensive care units. However, subsequent studies 

failed to show the benefit of tight glucose control and indeed showed higher

risk of death and significant risks to patients (Clain, Ramar, and Surani, 

2015). This experience highlights that substantial observational data do not 

lessen the need for rigorous evaluation of interventions to modify surrogate 

measurements. 
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Are Relevant Data Collected Based on the Understanding of the 
Prediction Task?

Sensor data are modified by a host of factors that affect readings and 
measurements in nonobvious ways. For example, a newly physically active 
individual may develop a slower heart rate due to improved cardiovascular 
health, or the same finding may reflect that he is newly employed and now 
has health insurance to pay for a prescribed beta-blocker for migraine 
prevention. Traditional clinical studies have protocols to try to discern 
plausible causal factors that account for changes in outcomes. Because ML 
models may discern patterns not apparent to humans, if these alternative 
factors are not collected and analyzed, the model may produce spurious or 
misleading predictions. Clinical research expertise that focuses on a broad 
understanding of the phenomenon studied—not purely the technical details 
of the sensor or ML engineering—is necessary to combat this risk. 

Will Producing a Model Actually Help?

The premise of using ML to analyze personal sensor data is that knowl-
edge of what is detected, classified, or predicted will help an individual live 
a better life. It is often unclear if users change behaviors in response to 
recorded sensor data, or that users more likely to record sensor data in the 
first place will change their behavior (McConnell et al., 2018; Patel, Asch, 
and Volpp, 2015; Sperrin et al., 2016). In cases where the data induced 
intended behavior change, current evidence in mobile health studies shows 
only temporary, limited effectiveness for domains like improved activity 
(McConnell et al., 2018). Indeed, one study showed that use of wearable 
technology to assist in weight loss compared to traditional interventions led 
to less weight loss (Jakicic et al., 2016), highlighting the risk that sensor 
data may actually worsen outcomes through mechanisms that, in this case, 
even the investigators found unclear.

This is not a small concern that can be written off as inadequate hard-
ware or software; it is a fundamental aspect of clinical experience that 
accurate detection and prediction do not necessarily correspond to better 
outcomes. For example, thyroid cancer screening programs in South Korea 
led to a rapid increase in detection of this cancer, and nearly all patients 
diagnosed were treated (Ahn, Kim, and Welch, 2014). Yet this treatment has 
not led to better hard outcomes (e.g., longer survival), and treated patients 
have experienced substantial complications from therapy; understanding 
the difference between underdetection and overdiagnosis is critical.

In an extreme case, the video game Pokémon Go successfully motivated 
increased physical activity but was sometimes followed by severe cases of 
trauma due to players’ inattention to their surroundings (Barbieri et al., 

http://www.nap.edu/25878


Mobile Technology for Adaptive Aging: Proceedings of a Workshop

Copyright National Academy of Sciences. All rights reserved.

98	 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

2017). This is relevant to older adults because successful interventions to 
improve activity or other surrogate outcomes for elderly patients may con-
comitantly raise unanticipated risks, such as injuries that frail individuals 
may not recover well from.

Outcomes are also affected by constraints in the environment that are 
nonmodifiable, such as less activity due to living in a nonwalkable city 
(Sadik-Khan and Solomonow, 2017) or nonideal food choices associated 
with living in a food desert (Kelli et al., 2019). In these cases, policy or 
environmental changes may be more important interventions than person-
alized models.

How Predictive Is Sensor Data?

Is a continuous stream of sensor data required for an ML task? 
Although the premise of sensors is that daily habits and physical activity 
can substantially alter clinical outcomes, the experience from clinical trials 
shows that many drugs designed to induce a physiological effect actually 
have only modest treatment effects (Califf and DeMets, 2002). If lifestyle 
habits are thought of as inducing potential physiological changes related to 
health outcomes, then discerning the effect of each habit, especially when 
multiple habits occur sequentially in various orders and combinations, is 
extraordinarily difficult (Gottesman et al., 2019). 

Prediction using continuous, consented measurement may not be more 
accurate than traditional episodic data collection or may not have in-
cremental performance worth the burden of additional collection (Insel, 
2017). Moreover, if new medical therapies or environmental changes are 
introduced, predictions using data from past patients may become stale or 
inaccurate. 

What Are the Effects of Healthcare Disparities in Data and Machine 
Learning? 

Collecting and using consented data from groups that have experienced 
discrimination or human and structural biases brings the attendant risk of 
worsening healthcare disparities (Rajkomar et al., 2018). It is known that 
healthcare outcomes are affected by social determinants of health, education, 
the criminal justice system, and more (Zimmerman and Anderson, 2019). 
The hope of using sensor data is that physiological or physical activity might 
be used directly to forecast health, but it is impossible to disentangle the effect 
of physical activity from all the other factors, especially in the face of ML. 
The net effect is that investigators need to carefully consider the interplay of 
healthcare disparities, collection of data, and creation of labels.
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The complexity of ML models can create a pervasive influence of dis-
parities that requires vigilance to detect. ML models can identify signals 
in the data that cannot be identified by humans (Poplin et al., 2018), and 
the imprints of the social determinants of health are subtly imprinted on 
all types of data. For example, consider a wearable sensor that measures 
a sequence of heart rates. To a human, the sequences from a device from 
one manufacturer might look the same as one from another manufacturer, 
but the idiosyncratic processing of the raw data can leave signatures in the 
data that are invisible to the human eye but distinctly present. This means 
that sensors that purport to measure the same physiological attribute may 
generate sequences that reveal as much information about the device itself 
as the heart rate of the patient; a model could therefore possibly distinguish 
data from “expensive” versus “inexpensive” sensors and use a derived 
socioeconomic indicator of wealth rather than the trends of the values 
themselves for prediction. This requires clinical and research expertise to 
know what to look for, and it requires data science expertise to identify 
and potentially address the effect of healthcare disparities on the results 
(Rajkomar et al., 2018). 

In aging populations, there is especially the risk of privileged bias, 
agency bias, and informed mistrust. Privileged bias refers to the phenom-
enon of aging populations not having a voice in the types of technologies 
being developed that they can use or afford. As a result of privileged bias, 
systems may not be designed to solve the problems facing aging popula-
tions, such as limited internet connectivity or e-literacy that limits adoption 
of even interested elderly patients (Van Winkle, Carpenter, and Moscucci, 
2017). Agency bias indicates a situation in which stakeholders do not 
have input into types of problems that they want solved. For example, 
aging populations may not be included in the decision-making process of 
building and deploying the models. Informed mistrust describes a situation 
where stakeholders do not trust the systems built to help them. This might 
happen, for example, when researchers may be financially incentivized to 
solve problems faced disproportionately by the well educated and wealthy, 
introducing possibly warranted skepticism that the models are generaliz-
able. These problems are compounded by sources of bias in the data (e.g., 
nonrepresentative patients being enrolled) and the prediction of surrogate 
outcomes (Obermeyer et al., 2019).

There is no single solution to solve all of these problems, but there are 
recommendations on best practices to be upheld during all phases of devel-
oping ML models, including design, data collection, training, evaluation, 
launch review, and postdeployment (Rajkomar et al., 2018). 
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FUTURE WORK

Investigators face significant challenges in study design, data collection, 
and ML-based analysis. What are some paths forward?

Large-scale studies (All of Us Research Program Investigators, 2019) 
studying aging populations over long time periods will likely be a critical 
source of new insights. Existing studies have shown the feasibility of enroll-
ing large numbers of patients in a short time period (Perez et al., 2019), 
but obtaining verifiable longitudinal data on those participants remains 
challenging both for logistical reasons and for lack of interoperability 
(Rajkomar, Dean, and Kohane, 2019). Applying commercially available 
sensors and tracking clinically relevant hard outcomes will likely promote 
better forecasting of future health events and deterioration, but the full 
cycle of trial development, analysis, and validation of these efforts may be 
protracted. 

However, many relevant health outcomes are largely specific to older 
adults, such as the onset of frailty or progression of Parkinson disease. 
Studies that enroll patients at higher risk for these outcomes might be 
less generalizable to a wide population but can still provide insight for 
vulnerable patients. Although using hard outcomes in large-scale studies 
is preferable, thoughtfully using surrogate outcomes in smaller-scale but 
high-risk cohorts can accelerate knowledge generation and direct limited 
resources to run larger, expensive trials with hard outcomes. The rapid 
development of new wearables means that the ability to rapidly evaluate 
sensors for clinical promise is increasingly important if researchers are to 
design studies that take advantage of new technologies (Kim et al., 2019). 
A key insight is that identifying the specific clinical challenges, including 
the relevant cohorts and outcomes, requires traditional clinical research 
experience; such selection requires clinical researchers working alongside 
engineers and ML experts.

Future work will need to consider the significant additional challenges 
beyond detection, classification, and prediction. The critical challenge to 
improve the process of aging and promoting health will be finding inter-
ventions that can ameliorate problems if they are caught in real time or in 
advance (Kourtis et al., 2019). 

CONCLUSIONS

Sensor data collected, with consent, from daily life promises to provide 
a peek at factors that lie beyond the measurement capabilities of traditional 
clinical studies that might affect health and aging. However, it is known 
that health is determined by many factors, some within individual control 
but many outside of it, including policy, social determinants, physical and 
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environmental determinants, biology, and access to health services (Deter-
minants of Health, 2020). Moreover, while this chapter focused on key 
scientific challenges, there are a plethora of other key issues of regulatory, 
data security, privacy, workflow, interoperability, ethical, and legal consid-
erations (Izmailova, Wagner, and Perakslis, 2018). 

There should be optimism that new technology will deepen our under-
standing of health and aging, but clinical experience cautions that the path 
will be difficult and full of dead ends. It will require thoughtful application 
of best practices in sensor design, ML, and clinical research to yield useful 
and generalizable knowledge that helps older patients. 
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Sensors in Support of Aging-in-Place:  
The Good, the Bad, and 

the Opportunities

Diane Cook1

ABSTRACT

Growth in wireless sensor and machine learning has reshaped the tech-
nology landscape. The maturing of these technologies is well timed, because 
an aging population needs sensor-based technologies to support its increas-
ing health needs. In this chapter, we examine the state of the science in sensor 
technologies and their ability to promote successful aging. We review recent 
developments in sensor design and behavior marker discovery as well as 
their roles in automating health assessment and intervention. In addition to 
highlighting technology progress, we also discuss significant challenges that 
researchers and designers are facing. The tremendous demand for sensor 
solutions to adaptive aging also introduces opportunities for unprecedented 
research breakthroughs. Both innovation and user needs must be considered 
as we transition technologies from infancy to widespread use.

INTRODUCTION

We are experiencing a dramatic and unprecedented shift in national and 
global demographics. Soon, a quarter of our population will be aged 65+, 
and unique healthcare challenges will accompany this age wave. Because 
people are living longer, chronic illness rates are increasing, and with 
them, the number of individuals who are unable to function independently. 
For the first time, older adults will outnumber children, creating a discrep-

1 Washington State University.
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ancy between persons needing care and those capable of providing it [1]. 
While the future of healthcare availability and service quality seems uncer-
tain, the future of healthcare IT is bright, with a projected market growth 
to $391 billion by 2021 [2].

Technology holds a promise to meet some of the coming age wave needs 
by automating and dramatically scaling health assessment and treatment. 
This promise is reflected in research and business interest. As Figure 6-1 
illustrates, research activity and market activity related to sensor technol-
ogy for healthcare have both been steadily growing over the past decade. 
Because 90% of seniors want to stay in their own homes as they age [3], 
many look to technology to extend functional independence and improve 
quality of life. There are many potential benefits of sensor-based technology 
for promoting successful aging in place. Rather than calling Mom several 
times a day to check in, family members can discretely view a display that 
reassures them she is up and carrying about her daily business. Instead of 
seeing a patient for 30 minutes, care providers can create diagnosis and 
treatment plans based on a complete behavioral profile generated from 
continuous monitoring over the previous year. Older adults do not need to 
worry about taking the right medications in the correct context when smart 

 

Figure 6-1. (bars) Number of publications, by year, for sensor-related healthcare topics over the past 
decade. Numbers are reported by Google Scholar; (line) Size of the global IoT market. Numbers are 
reported by Statista. 

FIGURE 6-1  (bars) Number of publications, by year, for sensor-related healthcare topics over 
the past decade. Numbers are reported by Google Scholar; (line) Size of the global Internet of 
Things (IoT) market. Numbers are reported by Statista.
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pill dispensers offer timely reminders. Furthermore, they can rest assured 
that assistance is on its way if a fall or other accident does happen.

To exploit the promise of aging-in-place support that is offered by 
smart sensor platforms, we need to determine what progress has been made 
in this field and what are essential next steps. In this chapter, we look at the 
state of the science in smart sensor-based health monitoring, assessment, 
and intervention for aging in place. We start by comparing the capabilities 
of popular sensor platforms and types of information that can be gleaned 
from these sensors. Based on this starting point, we then investigate the 
variety and maturity of sensor-based technologies that have been developed 
for adaptive aging. Finally, we discuss barriers and opportunities that arise 
as we move this field forward.

SENSORS AND BEHAVIOR MARKERS

Sensors provide information on a vast variety of physiological and be-
havioral features. In recent years these sensors have become low cost, wire-
less, integrated into larger packages, and deployable in real-world settings. 
Sensors differ in type, purpose, output signal, and technical infrastructure. 
Table 6-1 lists sensors that are commonly used for ubiquitous healthcare 
because they provide moment-by-moment human behavior markers, in situ. 
Here, we discuss the potential use cases for sensor data as well as the pros 
and cons for alternative sensor types.

TABLE 66--11  Common Types of Sensors Employed for Health Monitoring and Assistance

Category Sensors

Ambient passive infrared (PIR) motion, magnet / contact switch, temperature, light, humidity, 

vibration, pressure, power usage, electric device usage, water usage, RFID

Wearable accelerometer, gyroscope, magnetometer, compass, phone, text, app, battery, location

Environment frequented locations with type, outdoor walkability score, indoor and outdoor air 

quality, temperature, light levels, sound levels, number of residents, environment clutter

Physiological ECG, EEG, EMG, BCG, respiration, pulse, galvanic skin response, skin temperature, 

cortisol level, blood pressure, blood oxygen saturation

High-

dimensional

camera, depth sensor, thermal sensor, radar, microphone array

Digital traces web browser, purchases, social media
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Ambient sensors are attached to a physical environment. These sensors 
passively provide data [4]. Thus, individuals do not need to interact with 
the sensor or change their behavior in any manner. Because they are not 
associated with a single person, these sensors generate data that reflect the 
actions of everyone in the space together with external environmental influ-
ences. While these sensors are inexpensive and do not quickly drain their 
batteries, the information they provide is often coarse in granularity. As a 
result, sophisticated software is required to understand behavior patterns 
and health states from these data.

In contrast with ambient sensors, wearable sensors both require much 
more user attention and provide a much larger data set. Individuals who 
collect data from mobile phones, smartwatches, or other wearable sensors 
need to consider proper sensor placement [5]. These sensors must be fre-
quently charged because the battery drains quickly, especially if collected 
information is communicated offsite or location services are employed [6]. 
On the other hand, mobile devices offer a compact mechanism for bun-
dling many sensors together. Frequently, these devices either directly collect 
physiological information or offer attachments that monitor these read-
ings. These sensors provide personalized information in large volumes that 
offer tremendous insight into movement and behavior patterns. Consider 
a smartwatch that collects sensor readings at a rate of 50Hz. This device 
will generate over 4 million readings each day. While the resulting data are 
a treasure trove for data analysis, they quickly exceed the storage capacity 
of a mobile device.

Other input devices that provide high-granularity data are cameras and 
microphone arrays. These sources offer perhaps the richest information 
and attract a great deal of research on activity recognition and analysis [7]. 
Video and audio data are valuable for fall detection and automated fall risk 
assessment, speech-based health assistance, and analysis of group activities 
[8], and the corresponding methods usually require a large dataset to train 
a classifier and are inclined to be influenced by the image quality. However, 
it is hard to collect fall data, and instead simulated falls are recorded to 
construct the training dataset, which is restricted to limited quantity. To 
address these problems, a three-dimensional convolutional neural network 
(3-D CNN) was created. At the same time, they pose some of the most sig-
nificant challenges. These data are so voluminous that they prevent on-site 
storage and real-time analysis. They are sensitive to environmental factors, 
because lighting and ambient sound conditions can obscure the informa-
tion. Perhaps most dauntingly, the perceived (or actual) privacy risk thwarts 
user acceptance of the technology, particularly in their own home [9], [10]. 
An unlimited number of external information sources can also be analyzed 
to understand a person’s health state and behavior patterns. People leave 
digital traces when they use the Internet to browse, shop, and tweet. The 
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digital exhaust contributes to creating personal behavior markers. Due to 
the computational and privacy hurdles faced by these information sources, 
we restrict our state-of-the-science focus to the role of ambient and wear-
able sensors in health monitoring and assistance, particularly for older 
adults.

From raw sensor data, digital behavior markers can be gleaned. Map-
ping raw data onto health scores and identifying emergencies from raw 
data are extremely difficult. More often, features are extracted based on 
expert design or through automated feature learning methods such as 
autoencoders, independent component analysis, and clustering [11], [12]. 
Over the last few years, researchers have made great strides in identifying 
and validating these digital phenotypes [13]. Table 6-2 summarizes some 
of these phenotypes, or behavioral markers, that are particularly relevant 
for monitoring and assisting older adults.

TABLE 66--22  Behavioral Markers that Are Extracted from Sensor Data

Category Features

Mobility step count, walking speed, step length, daily distance covered, number and duration 

of times in one spot, number walking bouts, activity level

Exercise number, duration, movement types, intensity, location

Sleep number and duration of daily sleep bouts, sleep times, sleep locations, sleep 

fitfulness, sleep interruptions, sleep apnea

Activity number, duration, and location of basic and instrumental activities of daily living

Environment frequented locations with type, outdoor walkability score, indoor and outdoor air 

quality, temperature, light levels, sound levels, number of residents, environment 

clutter

Devices types of device interactions, medication frequency, use of compensatory devices

Socialization number and duration of incoming/outgoing phone calls, text messages, missed 

calls, address book, calendar, time out of home, number and duration of visitors, 

activity before and after calls

Circadian and 

diurnal rhythm

complexity of daily routine, number of daily activities, minimum and maximum 

inactivity times, daily variance in activity and mobility parameters, periodogram-

derived circadian rhythm
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Perhaps the most prevalent behavior metric is movement type and 
intensity. An accumulating body of research indicates that engaging in 
preventive health brain-aging behaviors may slow cognitive and physical 
decline as well as promote brain neuroplasticity [14], [15]. Furthermore, an 
estimated 10–25% improvement in modifiable risk factors could prevent up 
to 3 million cases of Alzheimer’s disease worldwide [16]. At the forefront 
of these healthy behaviors is exercise, which demonstrably improves cogni-
tion and mood while slowing signs of aging [17], [18]. In the home, motion 
sensors trigger a reading when movement is sensed in their field of view. 
Software estimates mobility levels and walking speed by tracking motion 
from one sensor to the next. On a mobile device, accelerometers quantify 
changes in speed and even support gait cycle estimation. Based on this 
information, walking speed, duration, and step counts can be estimated. 
Although these sensors can be fooled by other types of movements [19], 
they provide a baseline of movement behavior against which each person 
can measure changes.

Sleep is also a strong indicator of health in older adults [20]. Not only 
does poor sleep correlate with many adverse health outcomes, but sleep 
quality itself is an indicator of aging and health and provides predictors of 
health status change [21]. Ambient and motion sensors, together with spe-
cialized bed sensors, provide a host of sleep quality indicators. Total sleep 
time, sleep efficiency, and deep sleep can be sensed from movement and 
respiration. When location information is added, unusual sleep locations 
(e.g., in a living room chair rather than in bed) can be detected.

One of the most common features that is learned from sensor data is an 
activity label. Activities provide a vocabulary to express human behavior. 
Human activity recognition is a popular research topic [22]–[25]. Although 
much of the current work uses sensors to recognize activities in scripted 
settings, the same methods can be refined to label activities as they occur. 
Wearable sensors have traditionally been employed to recognize movement-
based activities (e.g., sit, stand, walk, climb, lie down), while ambient sen-
sors typically label basic and instrumental activities of daily living (e.g., 
work, exercise, relax, cook, eat, entertain, sleep). Once these labels are 
generated, information about the timing, regularity, location, and duration 
of routine activities can be incorporated into a personalized phenotype.

When additional sources of information are added to the mix, the 
number of behavior features that can be extracted is virtually unbounded. 
Sensors can now determine the use of water and electrical devices, monitor 
medication access, and detect interaction with items that offer compensa-
tory aid [26]–[28]. Online sources can be tapped to assess the air quality, 
temperature, and walkability of a geographic area. Similarly, a person’s 
computer usage leaves traces that indicate socialization habits. A vital be-
havior marker that confounds researchers is nutrition monitoring. While 
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researchers have succeeded in detecting eating movements [29], they typi-
cally require users to specify the type of food being consumed, which results 
in a decline in technology use over time [30].

All of these behavior markers represent one level of information on 
top of raw sensor data. On their own, the markers have been linked with 
health indicators and can be used to automate prevention and treatment 
plans. However, the markers are most effective when they are examined in 
combination and over time. The amount of time that is spent outside the 
home by itself may not provide an indicator of health, social anxiety, or 
loneliness, but day-to-day variability and trends paint a more vivid picture 
[31]. Similarly, automatically identifying circadian and diurnal rhythms 
[32], [33] is essential for all of the behavior markers by themselves and in 
combination. 

AUTOMATED ASSESSMENT

One particular need that technology can help address is the need to 
assess a person’s health and functional performance. Assessing the ability 
of an individual’s physical state and their ability to be functionally indepen-
dent supports family planning, creation of an appropriate treatment plan, 
and evaluation of intervention strategies. Technology offers many potential 
improvements to assessment Because many technology-based tests can be 
administered without a clinician present, they can be utilized by people 
living in rural settings without imposing time and location constraints 
[34]. Performing assessments in a patient’s everyday environment is more 
representative of the person’s capabilities [35]. Additionally, collected sen-
sor data can identify novel correlations that were unanticipated but are 
meaningful. As Figure 6-2 illustrates, automated assessment relies on large 
sensor data and corresponding behavior markers. Here, we review recent 
studies and findings that automate assessment of factors contributing to 
aging in place, including motor functioning, cognition, mood, and func-
tional independence.

 

Figure 6-2. The sensor-based process to support adaptive aging. Sensors generate readings, from 
which behavior markers are extracted. Machine learning techniques map behavior markers onto 
assessment categories, which form a basis for automated intervention. 

FIGURE 6-2  The sensor-based process to support adaptive aging. Sensors generate readings, 
from which behavior markers are extracted. Machine learning techniques map behavior 
markers onto assessment categories, which form a basis for automated intervention.
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Motor function. Throughout the field, wearable sensors are typically 
used to analyze ambulation and gestures. Thus, they naturally support 
motor function assessment. A key aspect of motor function is gait, and 
sensors placed within shoes pick up on multiple elements of gait, including 
walking patterns and stride [36], [37]. Researchers have used these patterns 
to diagnose movement-related conditions, including insensible feet, Parkin-
son’s disease, Huntington’s disease, amyotrophic lateral sclerosis, peripheral 
neuropathy, frailty, diabetic feet, injury recovery, and fall risk [38], [39]. 
In addition to analyzing movement patterns, these sensor technologies can 
also detect wandering and learn behavior precursors [40] and monitor time/
distance traveled outside the home during rehabilitation [41]. Such motor 
function can be assessed by ambient sensors in addition to wearable sen-
sors. As an example, Newland et al. found a predictive relationship between 
ambient sensor-detected gait parameters and multiple sclerosis symptoms.

Mood. Because sensors can be seamlessly woven into everyday life, 
they support timely assessment in ecologically valid settings. Moods can 
change quickly, and at unexpected times, so they need to be detected in the 
moment. Researchers have successfully identified mood at smaller sample 
sizes. For example, Boukhecbha et al. [31] predicted social anxiety based 
on visited location types as well as fine-grained behavior features that 
were extracted before and after texting and phone conversations. Simi-
larly, Quiroz et al. [42], as well as Mehrotra and Musolesi [43] inferred 
emotion from movement and heart rate data. Quiroz, et al. were able to 
predict happy, sad, or neutral states using accelerometer data. Mehrotra 
and Musolesi inferred levels of activeness, happiness, and stress, each on a 
Likert 1 through 5 scale. Instead of analyzing accelerometer readings, these 
researchers collected GPS data and extracted markers, such as number and 
duration of places visited throughout the day, to output predictions. Using 
ambient sensors, Aicha et al. [44] and Austin et al. [45] found a correlation 
between self-reported feelings of loneliness and sensor-detected minimal 
socialization. Similarly, Galambos et al. found that overall activity level 
patterns together with detection of time out of home were predictors of 
clinical scores for dementia and depression [46].

Cognition. Researchers have hypothesized that changes in cognition 
correlate with behavior changes. With the maturing of sensor technology, 
we now can validate the hypothesis and automate assessment and analysis 
of cognitive function. Because assessment tests designed with ecological 
validity are more effective than laboratory tests at predicting everyday func-
tioning, researchers have designed studies to link behavior and cognition in 
home settings. Initially, many of these studies were performed in a simulated 
home environment with scripted activities, yet significant correlation was 
found with traditional neuropsychological test scores [47]–[49]. Deglutition 
and yawning help identify fine-grained physiological symptoms and chronic 
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psychological conditions, which are not directly observable from traditional 
daily activities. We propose a new wearable smart earring that is capable 
of differentiating Investigator’s Global Assessment (IGA)  in the daily envi
ronment with single integrated accelerometer sensor signal processing. 
Our prior framework, GetSmart, shows significant improvement in IGAs 
recognition based on the smart earring, which necessitates users to replace 
the earring batteries frequently due to its energy requirement (high sampling 
frequency). More recently, study participants were allowed to perform their 
typical uninterrupted routines at home while sensors monitored their be-
havior. Behavior parameters over time were found to correlate with diverse 
health parameters, including fall risk, functional performance, cognitive 
function, motor function, and dyskinesia “on” states. Cook et al. vali-
dated their technology for 84 older adults, although the study was based 
on scripted activities [48], but republication/redistribution requires IEEE 
permission. One of the many services that intelligent systems can provide 
is the ability to analyze the impact of different medical conditions on daily 
behavior. In this study, we use smart home and wearable sensors to collect 
data, while (n = 84) other groups have tested these methods in actual homes 
over multiple months. While the sample size is often limited to 1–2 homes 
[50]–[52], long-term monitoring has been successfully performed in assisted 
living settings [53]. Traditional assessment scores have occasionally been 
predicted from behavioral markers observed over months or years [54], 
[55]. We examine the actual benefits of smart home-based analysis by 
monitoring daily behavior in the home and predicting clinical scores of 
the residents. To accomplish this goal, we propose a clinical assessment 
using activity behavior (CAAB). In many of these cases, walking speed and 
activity regularity were reliable indicators of cognitive health. However, 
Hellmers et al. [56] and Akl et al. [57] found that time spent in areas of 
the home and daily variation in room occupancy were strong predictors of 
mild cognitive impairment. Similarly, Petersen et al. [58] discovered a link 
between time out of the home and cognitive health. 

Functional independence. Very few efforts have been made thus far 
to automate functional performance assessment in everyday settings using 
sensor technology. Validating functional performance is challenging. In 
partnership with an occupational therapist, Robben et al. [59] were able 
to link daily variability in room occupancy with Assessment of Motor and 
Process Skills and Katz Index of Independence in Activities of Daily Living 
scores. However, automated detection of compensatory use has not yet 
been explored. Similarly, automatic scoring of a person’s activities based 
on sensor-observed consistency, efficiency, and completeness has not yet 
been designed.
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PREVENTION AND INTERVENTION

Sensor technology is better suited to observing behavior and health 
state than to taking preventive or therapeutic actions. However, key in-
tervention technologies have been designed using captured sensor data. 
Because sensors can detect activities such as taking medications, a natu-
ral intervention is to issue prompts (via a mobile device) for medication 
adherence. Sensor-driven automated prompts are ideal because they are 
less reliant on patients to program reminder times and contents, reduc-
ing user burden and increasing technology adoption. Additionally, studies 
have shown that prompting individuals based on context is more effective 
than timing-based prompts [60]. Clearly, a prompt to take medication at 
a person’s standard dinner time of 6:30 pm will be unsuccessful if dinner 
is delayed until 7:00 pm. Similarly, if the person is away from the medica-
tion dispenser or busy with an unrelated activity, the prompt may not even 
be heard, let alone be productive. The link between recognizing activity 
context and providing timely reminders was further investigated by Minor 
et al. [61]. Their app forecasted the next expected time for a key activity 
(e.g., take medicine), then issued a prompt if the activity was not initiated 
at the predicted time.

Not only can sensor data inform intervention design, but they can also 
provide a valuable means to understand treatment adherence. As an exam-
ple, Fallahzadeh et al. [62] captured sensor-derived contextual descriptions 
of instances when subjects followed a medication regimen and when they 
skipped a treatment dose. They found, for example, that individuals who 
linked their medication schedule with another routine activity (e.g., waking 
up, dinner) had higher adherence rates. These findings can help validate inter-
vention theories and automate prompt timings for automated interventions.

While prompts represent a primary sensor-driven intervention in cur-
rent technologies, a few investigations have considered additional auto-
mated assistance for older adults. One example is automatically contacting 
a care provider if a health event or significant anomaly is detected. While 
anomaly detection from sensor data is a heavily studied topic [63], detec-
tion of primarily irrelevant abnormalities is quite common. In the case 
of smart home data, anomalies can be reported due to sensor noise, an 
unexpected visitor, or a power outage. If the care provider receives too 
many alerts, they will be ignored. A recent project uses a clinician-in-the-
loop approach to address this issue [64]. By providing a small number of 
clinically relevant anomaly examples, this algorithm found a much higher 
percentage of anomalies that were related to health events, such as falls, 
nocturia, depression, and weakness.

One area that has not received much investigation is home automation 
assistance. Some researchers have automated smart homes based on antici-
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pated actions and needs [65], [66]. However, these capabilities have not 
been tested for usability by older adults. Given the observation that older 
adults are enjoying assistants such as Alexa and Google Home, and are 
learning to use these devices faster than in the past [67], this is an oppor
tunity that can be explored by researchers and entrepreneurs.

BARRIERS AND OPPORTUNITIES

There has been a flurry of activity in the space of pervasive com-
puting and machine learning–driven analysis of human behavior data. 
These advances set the stage for tremendous technological support of aging 
in place. However, there are still significant challenges that need to be 
addressed before the promise becomes a reality. Primary barriers to wide-
spread use include study reproducibility, technology scaling, user privacy, 
and technology adoption. While there are significant hurdles to overcome 
in these areas, the challenges also present rich opportunities for researchers 
to tackle fascinating problems.

Scale and Reproducibility

Many breakthroughs have been made in health-assistive technologies. 
However, most sensor-based health monitoring and assistance studies have 
not focused on result reproducibility or generalizability. Engineering fields 
focus primarily on innovation. Devoting time and resources to designing 
new technology diverts them away from ensuring study reproducibility. In 
the assessment and intervention studies we reviewed, the median sample 
size was 17 subjects. Additionally, only a handful of studies collected data 
continuously for multiple days, let alone months or years. While some 
researchers focus on particular population groups, the vast majority of 
studies use a convenience sample. Including diverse populations has not 
been a priority when showing “proof of concept” for a new technology. 
However, this step is critical to ensure that these important technologies 
are usable and achieve reliable results for all older adults. Large, diverse 
populations are also needed to address issues of bias and fairness when 
training machine learning models [68].

Admittedly, difficulties in validating sensor-driven healthcare thwart 
attempts at scalability and reproducibility. First, ground truth is frequently 
inaccessible and erroneous. Whether the technology is generating value for 
activity, behavior markers, or health state, accurate labels are necessary to 
validate the technology. However, while sensor data can observe humans 
continuously, clinicians cannot. Traditionally, self-reporting is gathered 
when clinician data are unavailable. However, these are often error prone 
because the retrospective details of past experiences and health states can-
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not be consistently recalled. Recent work in designing apps for ecological 
momentary assessment (EMA), or experience sampling, can help by col-
lecting information on health events, current activities, and self-reported 
functioning “in the moment” [69], [70].

Second, sensor-driven health technologies are a sophisticated assortment 
of components, each of which represents a new, dynamic breakthrough. 
Each part introduces a potential for failure and thus must be validated 
separately. As a result, many technologies are tested in a laboratory or 
heavily controlled setting, rather than “in the wild.” Using sensor technolo-
gies in actual deployments requires handling issues including sensor noise, 
missing data, and system failure. If data are available, then they need to be 
preprocessed to filter patterns of interest. Even if clean and segmented data 
are available, researchers have to contend with one of the most complex, 
dynamic types of processes: human behavior and its relationship to health. 
Problems with any one of these steps can propagate error downstream and 
jeopardize the reliability of the assistive technology. For this reason, many 
commercially available packages perform a subset of the pieces described 
in this chapter. Furthermore, commercial products are often driven by 
expert-crafted rules, to ensure their consistency and trustworthiness. Novel, 
machine learning–driven methods will need to be scaled and validated before 
they can be safely transferred to the marketplace.

Third, sensor-driven healthcare needs to scale to multiple types of sen-
sors, data sources, and population demographics. Researchers have found 
that there is no single “silver bullet” sensor source that provides all of the 
necessary insight to a person’s health and functional independence. As 
a result, methods including data fusion [71], transfer learning [72], and 
domain adaptation [73] will be essential. Using these procedures, sensors 
in a smart home can “train” a smartwatch on how to recognize classes of 
behaviors. Once the individual leaves home, the smartwatch can continue 
observing behavior where the home left off and can update the home’s 
models when it returns. The house can then take up the task while the 
watch is charging. Similarly, these algorithmic methods can assist in adapt-
ing data and learned models to new devices, new behavior categories, and 
new population groups.

Privacy and Security

Because data acquisition and analysis form the backbone of sensor-
supported aging in place, older adults’ privacy now increasingly depends 
on the ability to keep others from extracting or inferring sensitive informa-
tion from data. Companies are eager to obtain medical information. Some 
employers dispense rewards or penalties based on fitness data; others assess 
consumers’ health risks to increase insurance rates.
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Most older adults doubt that their personal information is being kept 
private and feel that online safety is low [67]. These worries are warranted. 
Even after data are scrubbed of obvious identifying markers, observed 
behavior data are still linked to an individual, that person’s medical data, 
and a host of other sensitive information. Maintaining anonymity has 
typically consisted of removing key identifiers, such as a person’s name, 
address, Social Security number, and other unique identifiers. However, the 
recent proliferation of high-dimensional datasets introduces the possibility 
of piecing together a person’s complete profile from seemingly disparate and 
anonymized pieces of information [74]. This ability has been confirmed by 
several projects in which sensitive medical data were identified from seem-
ingly obscure pieces of information [75], [76]. Thirty-three of the states 
that know those details do not keep the information to themselves or limit 
their sharing to researchers [1]. Instead, they give away or sell a version 
of this information, and often they’re legally required to do so. The states 
turn to you as a computer scientist, IT specialist, policy expert, consul-
tant, or privacy officer and ask, are the data anonymous? Can anyone be 
identified? Chances are you have no idea whether real-world risks exist. 
Here is how I matched patient names to publicly available health data 
sold by Washington State, and how the state responded. Doing this kind 
of experiment helps improve data-sharing practices, reduce privacy risks, 
and encourage the development of better technological solutions. Results 
summary: The State of Washington sells a patient-level health dataset for 
$50. This publicly available dataset contained virtually all hospitalizations 
occurring in the state in a given year, including patient demographics, diag
noses, procedures, attending physician, hospital, a summary of charges, and 
how the bill was paid. It did not contain patient names or addresses (only 
five-digit zip codes).

The risk of reidentification is heightened when collected informa-
tion is linked to ubiquitous, location-tracking mobile devices [77]. Last 
year, analysts found that a commercial fitness app led to the revelation of 
remote military outpost locations [78]. De Montjoye et al. [77] found that 
location data do not need to be continuous and fine-grained to perform 
reidentification. They theoretically determined that four spatiotemporal 
points are enough to uniquely identify 95% of the population. Mobility 
traces were deemed unique even at 1/10 of the available resolution, high-
lighting the fact that coarse granularity will not protect anonymity.

Even without explicit location information, sensitive features can 
be reidentified. Wu et al. [79] found that we can train deep networks to 
recognize the most discriminative changes of gait patterns, which sug-
gest the change of human identity. To the best of our knowledge, this is 
the first work based on deep CNNs for gait recognition in the literature. 
Here, we provide an extensive empirical evaluation in terms of various 
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scenarios, namely, cross-view and cross-walking-condition, with different 
preprocessing approaches and network architectures. The method is first 
evaluated on the challenging CASIA-B dataset in terms of cross-view gait 
recognition. Experimental results show that it outperforms the previous 
state-of-the-art methods by a significant margin. In particular, our method 
shows advantages when the cross-view angle is large  (i.e., no less than 36 
degrees). And the average recognition rate can reach 94%, much better 
than the previous best result (less than 65% achieved a human identifica-
tion rate of 98% from gait data for 4,007 subjects). Similarly, Na et al. 
[80] analyzed accelerometer data collected during walking periods for 
seven days as part of the National Health and Nutrition Examination 
Survey (NHANES). These researchers used random forest and support 
vector machine learning algorithms to reidentify demographic and physi-
cal activity data for 14,451 subjects. Rocher et al. [81] further challenge 
the release-and-forget approach to anonymizing and sharing datasets. 
Based on an analysis of populations within five publicly available data 
sets, they determine that 99.98% of Americans could be reidentified using 
15 demographic attributes.

Fortunately, the increasing awareness of digital exposure has sparked 
a similar rise in research to maintain the privacy of sensitive information. 
Privacy-preserving data-mining methods are being proposed to combat the 
corresponding expansion of data-exploitation methods [82]. Instead of 
releasing collected data, for example, synthetic data can be released that 
exhibits the same properties as collected data but obfuscates features of any 
one person [73], [83], [84]. Further developing and utilizing these methods 
can help overcome the dangers associated with collecting sensor data for 
health assistance.

Technology Adoption

Once technology is robust and secure, an important final step is for 
older adults to embrace it. Although privacy, discussed in the previous sec-
tion, could be a concern for some, Demiris et al. found that many older 
adults are still often welcoming of sensors in their homes, particularly when 
the technology provides assurance of health and safety monitoring [85]. 
Again, several factors must thus be considered to improve technology adop-
tion for this demographic. One factor is the cost of technology. In 2017, 
the reported median annual income for older adults in the US was $24,224 
[86]. This income is far less than the amount that most need to meet with 
their day-to-day living expenses, particularly since annual healthcare costs 
for individuals with chronic conditions are up to $13,230. As a result, 
expensive smartwatches or smart homes will not be a high-priority expen-
diture. Unless external agencies support sensor technology costs or prices 
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are dramatically reduced, the demographic that needs the support the most 
will be the least likely to be able to purchase it.

A second factor is addressing the desire for older adults to utilize health-
assistive technology. While older adults realize that health and wellness 
technology should be of significant interest, they prefer to invest time and 
resources on technology that entertains, connects, and informs. Most older 
adults feel that sensor-based technologies are novelties [87]. They shy away 
from such mechanisms unless they are singled out by their physician or a 
family member as needing something to monitor them. At that point, being 
surrounded by such technology heightens awareness of their health status. 
As a result, health-related technology often elicits a negative response, while 
communication technology gets a positive response. Technology developers 
can be sensitive to this perspective. Sensor technology can serve dual pur-
poses. In addition to monitoring activities, it can provide news coverage, 
connect older adults with friends, and entertain. Assistive technology should 
look stylish. It should also allow seniors to bring new capabilities into their 
home (e.g., control ambient music through voice commands, turn on lights 
when someone walks at night) as well as protect their well-being.

Finally, researchers must ensure that sensor-based health technology 
is safe and straightforward to use. Many health-assistive apps require user 
effort to set up alerts and keep logs [88]. Additionally, individuals with cog-
nitive limitations will require extended teaching time, and use of technolo-
gies may be forgotten if not habituated [89], [90]. Technology must take 
advantage of participatory design, in which feedback from older adults and 
care providers informs each step of the design process. Software interfaces 
and assistive devices need to include contrasting colors and large fonts, as 
well as consider communication difficulties due to hearing loss, when sup-
porting older adults [91]. Through partnership with end-users, researchers 
can create sensor systems that will support, not undermine, health and 
functional independence [92]. By additionally creating machine learning 
models that are interpretable, users will be more accepting of technology. 
At the same time, clinicians will be informed about insights that can shape 
their own practices.

CONCLUSIONS

Sensors and machine learning together provide essential tools that can 
revolutionize aging in place. Ubiquitous ambient and mobile sensors collect 
large amounts of continuous data. By processing these data, machine learning 
techniques extract behavioral markers and map behavior features to clinical 
assessment scores, providing automated assessment of physical, mental, and 
emotional health. Additionally, these insights provide a basis for designing 
interventions that support older adults and their functional independence. 
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Sensor-based methods are becoming increasingly reliable for unobtru-
sively monitoring behavior and measuring human factors that are related to 
cognitive and physical health status. Despite plentiful success stories, how-
ever, there still remain numerous challenges to face in providing technology 
strategies for adaptive aging. Technology changes quickly, but health-assistive 
hardware and software need to be validated on large, diverse populations 
to ensure their reliability. Because these sensor data reflect daily lives, col-
lecting and analyzing them in the cloud can introduce privacy and security 
risks. Even once these issues are addressed, systems must be appealing and 
usable by older adults for the technologies to be adopted. By addressing these 
remaining issues now, the technology will be ready to support our aging 
population when help is most needed.
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WEDNESDAY, DECEMBER 11, 2019

9:45 am – 9:55 am	� Welcome and Introduction to the National 
Academy of Sciences

		  �Adrienne Stith Butler, Board on Behavioral, 
Cognitive, and Sensory Sciences

9:55 am – 10:00 am 	� Committee Welcome and Introductions 
		  �Shelia Cotten, Michigan State University, 

Steering Committee Chair

10:00 am – 10:15 am	 Sponsor Perspectives 
		  �Jonathan King, National Institute on Aging
		  �Dana Plude, National Institute on Aging 

10:15 am – 11:15 am	� Paper on Ethics, Trust, and Privacy Issues in 
Mobile Technologies & Committee Discussion

		  �Jessica Vitak, University of Maryland

11:15 am – 11:30 am	 Break

11:30 am – 12:30 pm	� Paper on Social Connectedness and the Potential 
for Mobile Technologies & Committee Discussion

		  �Karen Fingerman, University of Texas at Austin

Appendix A

Workshop Agenda
December 11–12, 2019

Keck Center of the National Academies
500 Fifth Street, NW, Room 103

Washington, DC 20001
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12:30 pm - 1:30 pm		  LUNCH BREAK 
 
1:30 pm – 2:30 pm	� Paper on Use of Mobile and Sensor Technologies 

for Aging in Place & Committee Discussion
		  �Diane Cook, Washington State University 

(virtual)

2:30 pm – 2:45 pm	 Break

2:45 pm – 3:45 pm	� Paper on Use and Limitations of Mobile 
Technologies for Interventions & Committee 
Discussion 

		  �Neil Charness, Florida State University

3:45 pm – 4:00 pm 	 Closing Comments 
		  �Shelia Cotten, Michigan State University, 

Steering Committee Chair

4:00 pm 	 Adjourn, Day One

THURSDAY, DECEMBER 12, 2019

10:00 am – 10:15 am	 Recap of Workshop Day 1 
		  �Shelia Cotten, Michigan State University, 

Steering Committee Chair

10:15 am – 11:15 am	� Paper on Gathering Data with Sensors and 
Mobile Technologies & Committee Discussion

		  �Elizabeth Murnane, Dartmouth College

11:15 am – 11:30 am 	 Break

11:30 am – 12:30 pm 	� Paper on Using Mobile Technologies and AI/
Machine Learning for Prediction & Committee 
Discussion

		  �Alvin Rajkomar, University of California, 
San Francisco 

12:30 pm – 1:30 pm 	 LUNCH BREAK
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1:30 pm – 3:30 pm	� Discussion: Industry Perspective on Mobile 
Technology for Adaptive Aging

		  �Jim Harper, Co-founder and Chief Operating 
Officer at Sonde Health, Inc. 

		  �Scott Moody, Co-founder, CEO, and Chief 
Member Advocate, K4Connect

		  �Kyle Rakow, Vice President and National 
Director, AARP Driver Safety

3:30 pm – 3:45 pm 	 Closing Comments 
		  �Shelia Cotten, Michigan State University, 

Steering Committee Chair

3:45 pm 	 Adjourn Workshop
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Audi Atienza, National Institute on Aging 
Partha Bhattacharyya, National Institute on Aging 
Neil Charness, Florida State University
Shelia Cotten, Michigan State University 
Judy Dubno, Medical University of South Carolina
Karen Fingerman, University of Texas at Austin
Deepak Ganesan, University of Massachusetts Amherst
Elena Fazio, National Institute on Aging 
James Harper, Sonde Health
Johnathan King, National Institutes on Aging
Megan Lowry, National Academies of Sciences, Engineering, and Medicine 
Scott Moody, K4Conect
Elizabeth Murnane, Stanford University
Dana Plude, National Institutes on Aging 
Alvin Rajkomar, University of California, San Francisco
Kyle Rakow, AARP
Carly Roszkowski, AARP
Jessica Vitak, University of Maryland
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