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Preface

In 2004, the National Academies of Sciences, Engineering, and Medi-
cine held a workshop on Technology for Adaptive Aging. Since that meet-
ing, technology has evolved dramatically; in particular, mobile technologies
have become more pervasive in U.S. society and a mainstream part of
most peoples’ lives. Such changes provide new opportunities for research
on technology and aging. The National Academies Board on Behavioral,
Cognitive, and Sensory Sciences was contracted by the National Institute on
Aging (NTA) to convene a workshop in December 2019 to review research
on mobile technologies and aging, and to highlight promising avenues for
further research through a discussion about and compilation of six com-
missioned papers focused around mobile technology and adaptive aging.
In particular, the NIA was interested in how mobile technologies could be
used to support people in their everyday lives to help them live successful
lives as they aged. A committee was appointed by the National Academies
in April 2019.

WORKSHOP PLANNING

Committee members first met in May 2019 with representatives from
the National Academies and the National Institute on Aging to learn of
the specific format and guidelines for the workshop, as well as specific
NIA interest areas. A list of six topic areas for the workshop that were of
interest to the NIA was produced at this meeting. The committee selected
the authors for six commissioned papers to be presented at the workshop
in December.

vii
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THE WORKSHOP

The workshop was held on December 11 and 12, 2019 (see Appen-
dix A for the workshop agenda). The primary objective of this meeting was
to engage in meaningful discussions about how mobile technology can be
employed to enhance the lives of older adults. An author from each of the
six teams presented an overview of his or her commissioned paper, with
discussion after each presentation. The workshop also included a panel of
industry experts. The industry experts gave short overviews of their orga-
nizations and use of mobile technologies to advance aging, again followed
by discussion. The committee intended that the workshop presentations and
discussion, and the subsequent publication of the commissioned papers,
would generate ideas for future research that could help NIA set an agenda
in this area of study. This volume is the collection of the papers.

In the workshop’s first presentation, Jessica Vitak stressed that privacy,
security, and trust must be taken into account when designing studies that
use mobile technologies, and also when analyzing data that are collected
from various mobile devices. She noted the importance of digital literacy for
study participants as well as researchers. Vitak also emphasized the chal-
lenges of using mobile devices in research, and the importance of finding
ways to successfully navigate issues associated with mobile devices.

Karen Fingerman discussed the potential that information and com-
munication technologies (ICTs) have to foster or support social relations
among older adults. She emphasized the importance of social relations for
survival, noting that both those who are isolated and those who are lonely
have greater mortality. Fingerman reviewed various studies showing the
beneficial effects of ICTs on social relations for older adults, and also noted
research showing that technology does not necessarily substitute for in-
person human social ties. Fingerman suggested one possible path forward
is to focus efforts on individuals who do not use ICTs. She observed that
another key question is whether ICTs should be used to complement exist-
ing ties or to help generate new ties for older adults. Another line of inquiry
in this area indicated by Fingerman is access and design; she observed that
ICTs can be very frustrating for individuals with cognitive impairment.

Diane Cook discussed ways in which sensor technology might pro-
mote aging in place, but also identified a range of opportunities to expand
research using data gathered via sensors. These include enhancing diver-
sity in samples; developing new and innovative technologies that adapt
as people change; scaling up findings from smaller projects to see if they
are reproducible in different and larger groups, and if impacts persist
over time; decreasing costs of new technologies; and determining whether
people continue to use devices after the research period ends. Cook also
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discussed related challenges, such as identifying behavioral markers from
raw sensor data, protecting user privacy, and ensuring that the technology
is accessible to users.

Neil Charness focused on use and limitations of mobile technologies
for interventions. One of the key issues Charness raised was the need for
mobile monitoring systems to be tailored to participants in order to be suc-
cessful. To advance research in this area, Charness suggests possible paths
forward: avoiding small and unrepresentative older adult samples; ensuring
adequate control groups to demonstrate efficacy; and including long-term
assessment. Achieving these, however, will necessitate long-term funding
for large, multisite studies. He also noted the need for better partnerships
between academic researchers and industry to enhance usability, scalability,
and deployment of mobile monitoring systems.

Elizabeth Murnane presented an overview of her commissioned paper
that surveyed ways to gather data with sensors and mobile technologies.
Murnane highlighted the importance of ensuring usability of devices among
older adults. She noted that this includes interface elements (e.g., large
touch targets, fonts, and screen sizes, as well as high contrast, simple inter-
faces, low manipulability, and enhanced and adaptive volume control)
and interaction modalities that are more intuitive and natural. Minimizing
information overload and delivering cognitively legible feedback are also
important when using sensors and mobile technologies to attempt to change
behavior. Murnane also noted the need for more common-format, inter-
operability, and reusable mHealth platforms.

In his presentation, Alvin Rajkomar noted that it is possible to use sen-
sors to collect data from a lot of people, and while there is great potential
in this volume, a variety of challenges affect generalizability of the studies
being done. In addition, other types of data are typically needed besides sen-
sor data in order to make predictions. Unless data are collected from vari-
ous sources (types of sensors, groups, and places), there may be selection
biases present, which could bias the machine-learning outcomes. However,
he made the point that humans are equally or perhaps more biased than
artificial intelligence.

We would like to acknowledge the contributions of those who were
invited to participate in the industry panel, including Scott Moody,
K4Connect; Jim Harper, SondeHealth; and Kyle Rakow, AARP. The
National Academies staff facilitated all aspects of the committee’s work.
Special thanks go to Molly Checksfield, the study director, who facili-
tated the work prior, during, and after the workshop. She took over from
Sujeeta Bhatt, who staffed the effort until September 2019. Jacqueline
Cole handled the logistics for the committee and its invited guests at vari-
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ous stages of the project. Barbara Wanchisen, BBCSS board director, and
Adrienne Stith Butler, associate board director, provided guidance to the
committee throughout its work.

Shelia Cotten, Chair

Steering Committee for the Workshop on
Mobile Technology for Adaptive Aging
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Trust, Privacy and Security, and
Accessibility Considerations
When Conducting Mobile Technologies
Research With Older Adults

Jessica Vitak and Katie Shilton’

INTRODUCTION AND OVERVIEW

Information and communication technologies (ICTs)—including smart-
phones, tablets, and other mobile devices—provide a number of important
social, emotional, and tangible resources to older adults. Aging is associ-
ated with increased social isolation and a subsequent decline in emotional
well-being; ICTs may provide a social lifeline to those living in retirement
communities or far from family (e.g., Brewer and Jones, 2015; Cotten et
al., 2017; Gatto and Tak, 2008). ICTs can help older adults become more
cognitively engaged through games, information seeking, and other activi-
ties (Koo and Vizer, 2019; Lu et al., 2017). As physical health and mobility
decline, use of mobile devices provides older adults with more freedom by
removing the geographical constraints associated with many normal activi-
ties, including grocery shopping, banking, and accessing medical records
(Kotteritzsch and Weyers, 2016; Winstead et al., 2013). Finally, mobile
devices can help caregivers and medical staff provide better care through
monitoring and data collection (Kang et al., 2010; Kuerbis et al., 2017).

While older adults generally lag behind the general population in
adopting new technologies, they represent an increasingly large propor-
tion of users. In 2019, 91 percent of American adults age 65+ owned a
mobile phone and 53 percent owned a smartphone (Pew Internet, 2019).
Companies are increasingly designing and marketing mobile technologies

I College of Information Studies, University of Maryland, College Park. Address correspon-
dence to: jvitak@umd.edu and kshilton@umd.edu.
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2 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

toward older adults to help them age in place, stay connected with family
and friends, and maintain a sense of independence. Likewise, existing tech-
nologies like wearables (e.g., fitness trackers) and personal digital assistants
(e.g., Amazon Echo, Google Home) can be particularly helpful to older
adults as they seek to maintain their health and live on their own (e.g.,
Nath et al., 2018).

Mobile technologies also provide researchers with a wide range of tools
and methods for doing research with older adults. Sensors, mobile apps,
digital assistants, and other technologies can collect passive and active data
from users to improve care, provide assistance, and enhance their quality of
life, and researchers have used such technologies to develop mobile health
interventions for a wide range of physical and emotional health outcomes
(Joe and Demiris, 2013). These devices can also help offset problems of
accuracy and recall in data collection by providing “just-in-time” data
collection through text messages, apps, and other mobile tools (Heron and
Smyth, 2010).

At the same time, the use of mobile technologies by older adults intro-
duces challenging privacy and security risks. The privacy and security of
mobile data are complex topics. Mobile devices gather a broad spectrum
of data about their users, ranging from in-application activity to com-
munications to movement and location data generated by sensors in the
phone, and those data are collected in ways that are not always clear to
end users. For example, many applications on smartphones—including
GPS/navigation, ride services, and fitness tracking—require location data
to function, and many consumers will therefore opt-in to (or decline to
opt-out of) widespread location tracking by their device. Location data
can provide an exact accounting of where a person is located at any given
time and are generally considered highly sensitive (Boshell, 2019). Beyond
location data, people use their phones to generate and share sensitive data,
including emails, text messages, and financial transactions, which could
pose privacy and security risks.

Furthermore, the sensitive data generated by mobile devices are shared
with a wider ecosystem that includes device manufacturers, telecommu-
nication companies, and application companies, as well as third-party
data brokers (Shilton, 2009). Although recent legislation in Europe and
California provides individuals specific rights over their data, understanding
those access and control rights is challenging—and which companies and
researchers must adhere to the new regulations is still being fought over in
the courts. And while application developers frequently give users choices
about the privacy and security of their data, these choices can be cognitively
and logistically difficult to navigate (Kelley et al., 2012; Madden, 2012).

Researchers collecting and/or analyzing data from mobile devices, par-
ticularly those working with older adults, must account for a wide range
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of physical and cognitive abilities and tailor study design and participant
protections to account for that variance. As Farage and colleagues (2012)
note, designing for older adults should focus on simplicity, flexibility, and
ease of use. In the case of mobile devices, this means considering how the
size of the device and any text-based displays may create additional barriers
to adoption and use and offering multiple formats for presenting and col-
lecting data. Second, older adults are frequently less experienced users of
mobile and digital technologies, and experience with these technologies is
correlated with both trust in the systems as well as understanding of the pri-
vacy and security risks. Research suggests that older adults are more likely
to experience fear or distrust of technology (Knowles and Hanson, 2018);
this may lead to a lack of engagement or nonparticipation from some older
adults (Waycott et al., 2016). Other research suggests older adults may
engage in impression-management strategies during the research process
to counter stereotypes about older adults’ knowledge of technology or to
provide socially desirable responses (Franz et al., 2018).

Because of the general risks to privacy and security from mobile devices,
the specialized risks of research using mobile data streams, and the particu-
lar challenges of doing research with older adults, researchers at this inter-
section have an obligation to carefully consider their study design, paying
particular attention to data collection, analysis, sharing, and storage poli-
cies. The relationship between these challenges is highlighted in Figure 1-1.

To guide this process of recognizing and responding to the specific chal-
lenges of conducting mobile device research with older adults, this chapter
first reviews general privacy and security risks in the mobile data ecosystem.
It then narrows its scope to the ways those general risks intersect with re-
search among older adults, and maps best practices throughout the research
life cycle to address these barriers. The paper also discusses the benefits and
barriers to academic—corporate research partnerships in this space.

PRIVACY AND SECURITY CHALLENGES
IN THE MOBILE ECOSYSTEM

The unique privacy and security challenges of the mobile ecosystem
have been extensively detailed in previous work (Boyles et al., 2012;
Christin et al., 2011; Decker, 2008; Future of Privacy Forum, 2012; Greene
and Shilton, 2017; Harris, 2013), and researchers should be aware of these
challenges before asking older adults to engage in mobile device research.

First, mobile devices collect extremely intimate data, making them very
useful for research but challenging for privacy and security. Data collected
from mobile devices might document who a user contacts via voice or text,
how frequently, and the content of those messages; a variety of leisure
activities ranging from shopping to games to reading; and the location of a
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TRUST, PRIVACY AND SECURITY, AND ACCESSIBILITY CONSIDERATIONS 5

user’s home and work, as well as any other stops they make along the way.
Mobile phones and wearables can intuit sleep and wake times, document
searches for symptoms or concerns, and record social media activity. In
most cases, the data are synced with external servers automatically, requir-
ing no input from the user; while this improves user experience, people may
easily forget—or not realize—the digital traces they share with companies
throughout each day.

Next, both privacy and security of mobile data are complicated by the
sheer number of data stakeholders in the mobile ecosystem. Application
developers—who might range from individuals to academic researchers to
huge corporations—make choices about what data to collect, how long
to keep them, and how well to secure them. They may also decide to mon-
etize user data by selling them to third-party data brokers or advertising
companies. These decisions are subject to soft regulation from application
marketplaces (Greene and Shilton, 2017), which generally require that
users be notified of—and consent to—data collection (a minimum bar for
privacy). Similar data may also be collected by device manufacturers and
telecommunications companies in addition to application developers. While
consumers in Europe and California have increasing rights to both the vis-
ibility of their data and restrictions on their sharing—and the U.S. Congress
has been debating new privacy legislation throughout 2019—these laws are
quite new (and in the case of U.S. federal legislation, still in draft form),
and enforcing compliance will remain an ongoing hurdle for the foresee-
able future.

Until consumer legislation is strengthened, enforced, and universally
applied, researchers should be aware that asking older adults to increase
data collection on mobile devices may put data in the hands of unknown
third parties, ranging from telecommunications companies to shadowy data
brokers. Careful mobile application design can mitigate some, but not all,
of these concerns. See work by the Center for Democracy and Technology
(2011) and the Future of Privacy Forum (2012) for detailed recommenda-
tions on creating privacy policies and disclosures, ensuring accessibility
of content, notifying end users about changes in data collection practices,
sharing data with outside parties, and more.

Challenges for Mobile Data Research with Older Adults

U.S. researchers doing mobile device research with older adults have an
obligation to fully inform participants of the implications of research par-
ticipation, protect participants from the risks of participation, and ensure
equitable access to research (Federal Register, 2017). Similar obligations
apply to researchers in Canada, the UK, Australia, and the EU. However,
characteristics of the research population intersect with the general chal-
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6 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

lenges of mobile privacy and mobile device use in ways that particularly
challenge informed consent, risk, and equity.

Privacy is frequently defined in both legal and commercial sectors as
individual control over personal data (Solove, 2010). However, empiri-
cal and legal research increasingly challenges this definition (Nissenbaum,
2009; Martin and Nissenbaum, 2016). This research emphasizes privacy
as the appropriate use of data within a given social or societal context,
where appropriateness is governed by established values and social norms
of a context.

We argue that avoiding a definition of privacy focused on individual
control over data is particularly important for mobile data research with
older adults. Ensuring privacy by asking participants to make complex deci-
sions about the uses of their data introduces high cognitive and logistical
overhead to a project and places the burden for privacy protection on par-
ticipants rather than researchers. This is inappropriate for any research but
particularly for research with older adults. Because older adults are frequently
less experienced users of mobile devices, they may have incomplete mental
models of what mobile data can be used to infer, who might access that infor-
mation, and what the real risks of engaging in mobile data research might be.

According to a national study of American adults by Pew Internet
(Auxier et al., 2019), the majority of Americans report having little to no
knowledge about what companies or the government do with data they col-
lect; furthermore, Americans generally feel they lack control over who can
collect personal data. Compared to younger adults, older Americans report
feeling less in control over their location data, search terms, online pur-
chases, browsing behaviors, text messages, and social media posts (Auxier
et al., 2019). At the same time, older adults are much less likely to believe
their online and mobile activities are tracked than younger adults, which
may lead them to make less-informed decisions about sharing personal data
(Auxier et al., 2019).

These challenges of experience and understanding may impact older
adults’ trust in the research process and willingness to participate. In addi-
tion, age-related cognitive and physical decline may impact both the ac-
cessibility of research projects for participation and participants’ ability to
meaningfully consent to complex, granular data collection. The following
sections discuss challenges to informed consent and trust, privacy and secu-
rity risks, and accessibility and bias, and suggest best practices to mitigate
concerns in each area.

Addressing Challenges to Informed Consent and Trust

Trust is a critical component in any research setting, but it becomes
even more important in situations where there may be knowledge or power
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gaps, such as when one is conducting technology-based research with older
adults. For example, Serrano and colleagues (2016) looked at the use of
mobile devices for collecting health data and found that older adults were
less willing to share data through mobile devices; more broadly, study par-
ticipants were less willing to share sensitive health data over mobile devices
compared to nondigital methods. Research also indicates that distrust in
big data research is an even larger issue among marginalized communities;
in a large study in the United States, Madden et al. (2017) found that older
Americans with lower levels of income and education expressed greater
concerns about information (and physical) privacy and security. Similarly,
communities already targeted for increased surveillance (e.g., foreign-born
Latinxs in the U.S.) recognize that participation in pervasive tracking could
put them at greater risk.

A careful informed consent process is critical to building trust with
mobile research participants. With improvements in mobile data collection
and analysis techniques, researchers and ethics review boards are debating
best practices for obtaining informed consent (see, for example, Vitak et
al., 2016, 2017). In the U.S., new guidance from the Office for Human
Research Protections emphasizes the allowability of electronic consents
(eConsent) but has specified that it may not be appropriate for populations
who “have difficulty navigating or using electronic systems because of, for
example, a lack of familiarity with electronic systems, poor eyesight, or
impaired motor skills.” (U.S. Department of Health and Human Services
et al., 2016, p. 4). Informed consent—whether paper based or electroni-
cally mediated—is further complicated because a large amount of data is
being collected in the background by sensors, mobile phones, and applica-
tion programming interfaces. This raises questions about both breadth and
duration of data being collected, as well as whether participants can fully
understand the inferences that can be made from granular data, and the re-
sultant risks such data pose. While popular press accounts (e.g., Valentino-
DeVries et al., 2018) are gradually educating consumers about the risks of
device use and data collection, older adults with less technology experience
may still find such inferences surprising.

An additional challenge is determining when informed consent to exisz-
ing data use is needed at all. Studies that scrape content from social media
platforms or online communities, or those that use data already collected
by commercial mobile applications, raise questions about whether sec-
ondary consent for research is needed. Research by Vitak and colleagues
(2016, 2017) highlights disagreements among the research community over
whether informed consent for such projects is feasible, as well as variations
in how institutional review boards in the U.S. evaluate research using large
datasets.

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/25878

Mobile Technology for Adaptive Aging: Proceedings of a Workshop

8 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

Best Practices for Obtaining Meaningful Informed Consent

Guaranteeing meaningful informed consent for older adults is not a
simple matter. The first challenge is to maximize older participants’ compre-
hension of the study’s procedure, risks, and benefits. Research with adults
has shown that comprehension of standard informed consent processes is
frequently low (Nishimura et al., 2013), and older adults are less likely to
fully understand data collection practices involving mobile devices (Choi
and DiNitto, 2013; Schreurs et al., 2017). Overly technical descriptions
of data collection and analysis procedures are especially problematic for
older adults because research has consistently shown that they lag behind
the general population in digital literacy and skills and may lack the sup-
port network to assist them in developing those skills (e.g., Schreurs et al.,
2017; Wagner et al., 2010).

There are several options for maximizing comprehension during the
informed consent process of any study. In order to ensure that participa-
tion includes older adults with cognitive impairments, researchers should
develop study materials to allow proxies to assist participants in completing
the study, interact with participants across multiple sessions, and provide
clear benefits for participation (Bonnie, 1997). When possible, consent
should be conducted in person, and the document should be readable—
both in document design and complexity of text. Relying on mobile consent
procedures introduces additional risks that older adults may not be able to
easily navigate documents or read and comprehend materials and should be
avoided. Researchers might consider providing examples of the data they
are collecting and clearly listing the sorts of inferences they plan to draw.
Researchers should also consider analogies that can help inexperienced
mobile device users to build better mental models of how the devices collect
data and what the data can reveal about participants. Offering alternate
versions of the consent document, including audio and/or video versions
of the consent information, may be useful for participants with vision or
other disabilities.

In addition to having formal consent documentation, researchers may
want to create a second document that provides a straightforward list
of risks and benefits to participation, as well as options for discontinu-
ing participation or having their data removed from the dataset. Even if
content is written at an appropriate reading level, older adults may need
additional time to read through study materials and may have questions
for researchers (Alt-White, 19935). In some cases, researchers should care-
fully consider whether a potential participant has the cognitive capacity
to make decisions regarding participation (Kim et al., 2001); in cases
where a proxy is used, researchers should still try to obtain assent from
the participant.
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Best Practices for Building Trust with Research Participants

There are several ways to build trust in mobile data research beyond
the informed consent process. First, we encourage investigators to reflect
on questions of data ownership. Data ownership is a complex legal and
social issue. Currently, technology users have little legal ownership over
data produced by platforms and technologies due to terms of service con-
tracts that give ownership to companies; we advocate a different model
for researchers. Researchers should consider writing consent documents
so that older adults understand themselves to be the primary guardians of
their data. For older adults who may struggle to feel empowered in their
technology use, framing their data as an asset they control and contribute
can increase their sense of ownership in the research.

Researchers can also improve the trust of older participants in their
project by focusing on the utility of mobile research for this demographic.
Research shows that older adults may perceive newer technologies as
unnecessary and are less likely to take the effort to learn about them (Lee
and Coughlin, 2015; Turner et al., 2007). By engaging participants in dis-
cussions of why mobile devices are a uniquely useful and effective research
tool, researchers can build participant trust and engagement in the process.

Next, we suggest investigators think of consent for older adults as an
ongoing informational process, rather than a single occurrence. Because
older adults may struggle with incomplete mental models of how data are
collected, stored, and analyzed, researchers should look for ways to make
sure that participants understand (1) data flows and (2) research process
and goals throughout the study. This might include the use of large icons
or pop-up reminders on the mobile device interface to indicate ongoing
data tracking; providing a dashboard for participants to view some or all
of their collected data; or providing regular project communications and
updates tailored to the research population. In one example of this, Barron
and colleagues (2004) describe testing a smartphone app that encouraged
physical activity; in their study, they ran three rounds of data collection,
making adjustments to the app’s interface after each round of data collec-
tion based on feedback from older adult participants. Researchers should
also consider ways to give older participants control over data collection,
including the ability to turn collection on and off, or to delete data before
sharing it with researchers.

We also encourage investigators to consider more participatory forms
of research. Citizen science techniques for engaging participants throughout
the research process can include opportunities to co-design activities for
data collection apps, focus groups to engage participants in setting research
goals and developing research questions, and opportunities for individuals
to analyze their own data and see their data compared to those of others in
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the study (Pandya, 2012). These techniques are particularly effective with
older populations, who may have more time available to participate in co-
research activities, and who can particularly benefit from the technology
literacy such engagement sessions can provide.

Finally, researchers can build trust with participant populations by
behaving in a trustworthy manner with participants’ data. We suggest
adhering to privacy by design as a project goal. Privacy by design is an
orientation toward research and technology development that emphasizes
privacy as built into every element of a technology or protocol (Cavoukian,
2012). Ensuring that privacy is embedded into study design and any tech-
nologies developed for the study is a multistep process, which we describe
in more detail in the next section.

Addressing Privacy and Security Risks in Mobile Research with Older Adults

Practicing data privacy and security by design in mobile data research
with older adults involves attention to protecting participants’ data at each
stage of the data life cycle: collection, storage, analysis, and deletion. We
encourage researchers to craft a data management plan (Michener, 2015) to
proactively spot privacy and security issues in their own projects and make
plans to counter the issues. A data management plan for managing the data
of older adults will likely not vary greatly from those for other adults; the
technical means of securing sensitive data are similar across populations.
However, because of the differences in expertise between researchers and
older adults discussed earlier, researchers using mobile data about older
adults have an increased duty of care for participant privacy and security.

Two major issues to consider during data collection are data minimiza-
tion and dealing with personally identifiable information (PII). Data mini-
mization is collecting only what is needed to answer the project’s research
questions. A key strategy for minimizing data collection is careful reflection
on meaningful indicators. For example, is collecting a participant’s location
needed for an exercise-monitoring project if accelerometer data are col-
lected? Collecting the bare minimum of data needed to satisfy a project’s
research questions minimizes the amount of data that could be exposed
in a leak, used for reidentification, or shared by third parties. Research-
ers should also consider performing data processing on the mobile device
when possible, sending only aggregated data or models to project servers.
For example, instead of collecting all location data from older adults,
researchers might consider using the mobile device to process GPS read-
ings into “time at home” and “time away from home” and keeping only
those aggregate characteristics while discarding the GPS trace. Collecting
and sharing a minimal set of data can reassure older adults who may treat
expansive data collection with suspicion or confusion.
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Next, reflect upon what data a project will collect that could be consid-
ered PII. In a world of big data and linkable datasets, “personally identifi-
able” has become a broader term than names or Social Security numbers.
For example, individuals might be identifiable through their location traces,
particularly those who spend large amounts of time at an identifiable
home or institutional address. Individuals may also be identifiable through
aggregation of several data types; for example, Sweeney (2000) showed that
combining gender, birthday, and zip code is often enough to identify some-
one. Even deidentified data are subject to reidentification attacks when they
are combined with publicly available datasets (Narayanan and Shmatikov,
2008). Researchers should realize that few people—and especially older
adults—fully realize the extent of reidentifiability of mobile data. Even if
investigators have taken pains to minimize the amount of PII collected, they
should not rely upon deidentification of mobile data as the main privacy
or security safeguard, and they should not make inflated promises of con-
fidentiality or anonymity to project participants.

Considerations for data storage can impact the data’s security. Best
practices for all populations, but particularly vulnerable populations such
as older adults, include encrypting data in storage on both devices and
project servers, and limiting researcher access to those data. Projects should
also consider access restrictions and storage protections for the application
on participants’ mobile devices. Storage protections, such as passwords
or lock codes on mobile devices, have tradeoffs for research among older
adults. Secure passwords become more difficult to use as memory declines
with age (Kowtko, 2014). Likewise, biometric identifiers, such as finger-
print unlocking available on smartphones, are easy to use but may have
higher rates of failure among older adults (Kowtko, 2014). A recent study
found pattern-based authentication techniques to be most usable among
older adults (Grindrod et al., 2018).

Privacy measures can also be taken during data analysis. Most re-
searchers already take steps to protect individuals in a dataset, commonly
by reporting results in the aggregate. With the increased push by federal
agencies and others to share data more widely—which supports a number
of important research goals around replication and advancing science—new
challenges arise to protecting individuals within a dataset. Researchers
have consistently shown that standard deidentification techniques, such as
removing sensitive variables from a dataset, do not effectively prevent re-
identification of individuals (see Ohm, 2009, for a review). Furthermore, as
more variables are removed from a given dataset, its utility decreases, mak-
ing this process a less-than-optimal solution for advancing research. The
current state of the art in technical privacy solutions is known as differential
privacy, a technique that “ensures that the removal or addition of a single
database item does not (substantially) affect the outcome of any analysis”
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(Dwork, 2011). Differential privacy is especially useful for protecting data-
sets that will be shared more widely because it allows for robust analyses
without putting individuals at risk of reidentification. See Cheruvu (2018)
for a high-level overview of how differential privacy works.

Finally, researchers should plan for how data will be deleted at the end
of a study. This includes managing deletion of data stored on participants’
devices as well as any data on servers or in the cloud. If complete deletion
is difficult or impossible due to the number of intermediaries who have
stored the data, this limitation should be clearly specified to participants
during the consent process. Researchers should also consider whether they
will allow participants to actively delete data (or request data deletion)
during the study itself. Older adults may need particular guidance on user
interfaces for deleting data or requesting data deletion.

Addressing Challenges of Bias in Research With Older Adults

For researchers using mobile devices and mobile data collection, con-
cerns extend beyond the privacy and security risks of mobile data. Study
design reliant on mobile technology may also introduce issues of accessibility
and bias. In this section, we discuss challenges to accessibility and bias in
studies with older adults and mobile technologies.

It is important that researchers carefully evaluate their study design and
materials for biases and stereotyping. When studying technology adoption
and use, stereotypes abound regarding older adults’ aptitude for, use of, and
attitudes toward ICTs. Wandke and colleagues (2012) identified six myths
regarding older adults and technology use, including the belief that older
adults are not interested in using ICTs and view them as useless, as well as
the belief that older adults lack the physical and cognitive capabilities to
use ICTs. These types of assumptions could negatively bias sampling (e.g.,
avoiding adults 80+ or in nursing homes), protocol materials (e.g., not
asking participants about certain technologies, not having them directly
interact with ICTs), or interpretation of findings (e.g., making generaliza-
tions about all older adults).

It is also important for the study design to minimize any effect that
stereotypes held by older adults regarding ICTs may have on their participa-
tion. Older adults may be hesitant to use mobile technologies because of a
lack of experience or negative past experiences (see, for example, Comunello
et al., 2017). Both attitudes may negatively affect older adults’ willingness to
participate in research on mobile devices as well as how they interact with
technologies, so researchers should consider ways of framing their study
and any artifacts that might be used in the study to address these attitudes.

Finally, for researchers using existing data by partnering with mobile
companies or platforms, considerations of the representation of older adults
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in mobile datasets is an issue. Though the penetration of mobile devices
among older individuals is increasing, just over half of U.S. adults 65 and
older owned a smartphone in 2019 (Pew Internet, 2019). Almost half of all
seniors in the U.S. would be left out of many existing datasets, and those
left out of the data may also be marginalized in other ways.

BEYOND DATA COLLECTION:
CONSIDERATIONS FOR ACADEMIC-CORPORATE PARTNERSHIPS

As noted earlier, numerous companies are involved directly or indirectly
in developing hardware, software, and other mobile tools for older adults,
and the rich data these tools collect could advance our understanding of
older adults’ relationship with mobile technologies. Therefore, we encour-
age researchers and companies to focus on collaborations that enable aca-
demic researchers access to corporate data that would be difficult—if not
impossible—to obtain otherwise. Partnerships with major companies like
Apple, Google, and Microsoft could advance research on a wide range of
health and wellness outcomes for older adults, improving quality of life
both for those aging in place and for caregivers providing assistance as
adults age.

That said, we acknowledge that there are significant barriers to
researcher—industry collaborations that must be overcome, including cor-
porate concerns about intellectual property and academic concerns about
data access restrictions. In the aftermath of controversies that blurred the
lines between corporate and academic uses of data, from Facebook’s “emo-
tional contagion” study (Selinger and Hartzog, 2016) to the revelations of
improper data usage by Cambridge Analytica (Confessore, 2018), compa-
nies may be cautious about partnering with external researchers. In addi-
tion, companies may hesitate to partner with external researchers because
of concerns related to research output, particularly any output likely to be
critical of the company itself. Because of this, many companies may only
partner with academics they already trust and require corporate sign-off of
any data analyses or written reports.

In spite of these challenges, academic—corporate research partnerships
are critical because of the quantity and quality of data; these companies
have highly granular and longitudinal data that can be used to draw infer-
ences and improve a range of outcomes. Given that a large percentage of
the mobile technologies older adults use are targeted directly or indirectly
at health and well-being, researchers can use data from mobile apps, wear-
ables, and other devices to directly improve the health of and care for older
adults. Furthermore, academic researchers can more narrowly focus on
specific research questions and applications of the data that companies may
have neither the time, energy, nor expertise to pursue.
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The biggest hurdles to overcome in data sharing between companies
and academics are ensuring the privacy and security of end-user data and
meeting any legal requirements set out in the company’s terms of use. The
recent breakdown of Facebook’s partnership with independent research
commission Social Science One—a program that invited researchers to
submit proposals to study misinformation and promised to share aggre-
gated data related to elections with funded researchers—highlights how
challenging secure data sharing can be at scale (see Alba, 2019, for an
overview). In response to concerns about Facebook releasing sensitive
personal information of users, the company began applying differential
privacy algorithms to the data to ensure usability and privacy; however, as
of fall 2019, Facebook and Social Science One have not been able to meet
these competing demands. Other research by the Future of Privacy Forum
(2017) suggests that while there are signs that companies are more open
to academic partnerships, as of now they are largely limited to a small set
of elite institutions and researchers. Companies are more likely to support
research proposals that support the company’s core mission, which may
exclude important societal questions that fall outside of those goals.

Models for how corporate—academic partnerships can function do exist,
and these could be used to guide future partnerships. Focusing on the role
of mobile data in improving older adults’ health outcomes, we can look
at Apple’s HealthKit and ResearchKit? as examples of applications that
encourage individuals to voluntarily share their data with researchers and
thus provide a platform for researchers to securely access and analyze those
data. HealthKit is a developer framework embedded in Apple’s mobile
(10S) and Watch (watchOS) operating systems that lets users share various
types of data from the devices and third-party apps in an easy-to-read for-
mat through a dashboard. Individuals who want to participate in research
studies can easily share their health data and can control the types of data
they share. Apple’s ResearchKit allows medical researchers to collect and
analyze detailed and granular data from their patients unobtrusively through
iPhones. Other organizations and applications have provided similar access
to researchers; for example, the online platform PatientsLikeMe has pro-
cedures for allowing academic researchers to request access to their data.’

Recognizing that access to corporate data is difficult and may not be
possible, nonprofits have begun to develop guidelines and frameworks to
help researchers in their evaluation of mobile technologies. One example of
this PsyberGuide,* a nonprofit organization focused on improving mental

2For more information, see: https://developer.apple.com/healthkit/ and https://www.apple.
com/researchkit/.

3For more information, see: https://www.patientslikeme.com/research/fag#qr3.

4For more information, see: https://psyberguide.org.
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health outcomes; it says its goal is to “provide accurate and reliable infor-
mation free of preference, bias, or endorsement.” PsyberGuide evaluates
mental health apps’ usability, credibility, and privacy practices and can help
researchers make decisions about what mobile apps to use in their research.
Other nonprofits like the Future of Privacy Forum can help researchers
forge new relationships with companies and help companies navigate the
privacy risks associated with data sharing.

CONCLUSION

Performing research with older adults using mobile technologies places
researchers and participants at a nexus of complex ethical issues. General
concerns about the privacy, security, and accessibility of the mobile data
ecosystem are exacerbated by the duty of care researchers owe to partici-
pants and the complex challenges of aging. In this chapter, we have high-
lighted a number of issues researchers should consider when conducting
research in this space. Our suggestions focus on ensuring accessibility and
access for participants with a wide range of potential physical and cognitive
limitations, reducing potential bias in research, and building trust through-
out the research process. We provide specific suggestions for protecting
participant data during and after data collection and communicating pro-
cedures effectively to older adults throughout the process. We advocate for
researchers to embrace “nontraditional” research methods, such as employ-
ing citizen science methods of data collection to both empower older adults
and provide them with more control over their data. Finally, we encourage
researchers to continue to develop relationships with companies and other
organizations that can enable collection and analysis of richer datasets and
provide more meaningful insights into the core research questions guiding
this research community.
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Mobile Monitoring and Intervention
(MMI) Technology for Adaptive Aging

Neil Charness, Walter R. Boot, and Nicholas Gray'*?

INTRODUCTION AND OVERVIEW

Mobile monitoring and intervention (MMI) technology offers a promis-
ing way to provide interventions tailored to individuals and their current
context. Ideally, the system would be capable of monitoring relevant aspects
of physiology and behavior, making intelligent predictions about when and
how to intervene, and then delivering timely interventions. This chapter
outlines critical issues to consider for MMI, including whom to target, what
measures to target, where to monitor and intervene, when to monitor and
intervene, and how to monitor and intervene. We also discuss attitudinal
barriers for aging adults and the challenge of promoting adherence to MMI
systems.

We review recent studies, most employing smartphones with small, un-
representative samples that include monitoring and prediction, though not
intervention. Although there are many commercial apps for smartphones
aimed at supporting health, they have unknown efficacy and generally are
not well designed for aging adults, failing to consider changing needs for
the young-old, middle-old, and old-old age groups. We find that MMI tech-
nology for aging adults is in its infancy, with few good examples showing
efficacy or cost effectiveness. To move such technology toward maturity we
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suggest supporting studies that can enroll larger, more representative sam-
ples, and that can track system performance over an extended period (years)
to assess efficacy for managing chronic conditions. Such studies might
benefit from cooperation between federal agencies such as the National
Institute on Aging (NIA) and the National Science Foundation (NSF) and
might consider making use of existing longitudinal panels.

FRAMEWORKS FOR MONITORING AND INTERVENTION
FOR ADAPTIVE AGING

Our aim is to provide frameworks and recommendations for research on
MMI systems by relying on recent (2015+) studies and reviews that assess
efficacy for promoting adaptive aging. We focus primarily on studies of aging
adults. We define mobile technology as devices that are wearable (e.g., inter-
nally: cardiac pacemaker; externally: smartwatches) or portable (e.g., smart-
phones, tablets that can fit in clothing or in accessories such as purses). In
this chapter, we first introduce a framework for identifying the challenges for
deploying MMI systems, then discuss attitudinal constraints on adoption. We
then discuss frameworks for MMI, focusing on measurement, prediction, and
intervention. We evaluate existing mobile apps and how they might promote
adherence for diverse aging populations. This chapter ends with a discussion
of how the RE-AIM framework can guide the development of MMI systems
and closes by outlining potential research priorities.

Sensor-based monitoring technology, both fixed and mobile, offers
advantages and disadvantages for intervening to promote improved well-
being for our aging population. Unlike early “one-size-fits-all” interven-
tions in behavioral clinical trials (e.g., Ball et al., 2002), sensor-guided
interventions can generate tailored actions (e.g., Lustria et al., 2013). Usu-
ally fixed-location sensor systems (e.g., smart home sensor arrays) have
the disadvantage that the user must be in a fixed location, though it is
possible to envision blended fixed and wearable systems (Skubic et al.,
2014). A significant advantage of MMI is that the system can move with
the person. A smartwatch monitoring movement can prompt an immobile
wearer to move after a lengthy interval of sitting no matter where they are
(home, senior center). A significant disadvantage for MMI is that users must
continually wear or carry devices on their person and keep them charged
(Reeder and David, 2016).

Table 2-1 lists some of the challenges that arise when making the deci-
sion to deploy MMI technology.

Some questions relate to the ethics of MMI—that is, whether (“why”
and “what”) and under what circumstances (“where” and “when”) MMI
might be initiated. The unit of analysis is important (“who”), usually taken
to be the monitored person, such as an older adult living alone. But that
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TABLE 2-1 Challenges in Mobile Monitoring and Intervention (MMI) Research and Practice

Challenge | Example Responses Constraints to Consider
Why Prevent harm, promote well-being Ethical, legal, self-
Monitor determination for lifestyle,

societal resources

Whom to | Aging adult Co-dependent dyads, caregiving
Monitor teams
What to Physiological (e.g., blood pressure), Reactivity, lifestyle constraints
Monitor psychological (e.g., cognition, well-being)

indicators
Where to | Home, work, everywhere Privacy, legal
Monitor

When to Continuous, intermittent intervals, self-chosen | Privacy, data transmission

Monitor intervals bandwidth, storage, data
security
How to Sensors, probe questions (e.g., ecological Power source, device, person

Monitor momentary assessment) for person, for proxy | and network capability and
availability/reliability and
security

unit of analysis may miss the person—family and person-community con-
texts for MMI (see the chapter by Fingerman et al.), in line with the finding
that caring for family members is a primary human social motivation (Ko et
al., 2019). Limiting consideration to the older adult (and family) may also
miss the issue of bystander capture: people being monitored who did not
consent to being monitored.? The methodology for monitoring (“how”) is
dealt with in other chapters in this volume.

Underlying many of the questions is consideration of privacy: whether
older adults wish to be monitored and if so, what aspects of their behavior/
physiology should be allowed, and how monitoring should occur. A
population-representative survey of Americans found that older adult
cohorts are more aware than younger cohorts about government monitor-
ing but are less likely to view as “very sensitive” contents of email, text mes-
sages, and health information, and equivalently less sensitive about their
Social Security number (Madden, 2014). Older cohorts are also less likely

3 An example from one of our monitoring studies (Evans et al., 2016) is a worker who came
into a telehealth-equipped home that was monitoring a heart failure patient. He stepped on a
wireless weight scale and triggered an alert because of the increased weight over the patient’s
baseline.
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than younger adults to take appropriate measures to protect their privacy
online, such as asking to have information removed, or anonymizing post-
ings (Madden, 2014). A similar population-representative survey showed
that older cohorts on Facebook are less likely to change their Facebook
privacy settings: 33 percent of those age 65 and older have changed privacy
settings compared to 64 percent of those age 18-29 years (Perrin, 2018).
A year following entry into a study of unobtrusive monitoring (ISAAC),
nondemented older adult volunteers and older adults with mild cognitive
impairment (MCI) showed more concerns with privacy (concern that their
information could be exploited) than at entry (Boise et al., 2013). However,
72 percent of participants still showed acceptance of monitoring.

If everyone valued privacy more than any potential gains from moni-
toring, there would be no basis for developing systems that might provide
other benefits, such as prolonging independence or preventing harm. A
survey of a diverse sample of aging American adults (45 years and older),
showed a willingness (particularly among those with disabilities) to trade
off privacy in favor of maintaining independence even for rather intrusive
monitoring options, such as cameras (Beach et al., 2009). Still, in terms
of sharing information from monitored activities, participants indicated
they were more willing to do this with family members and health care
providers than with researchers and least willing for insurance companies
or government. There appears to be some generalizability across popula-
tions. In a representative Swiss survey, 57 percent of those age 50 and older
who tracked health data (28% of the sample) were willing to share data
with researchers (Seifert, 2018). Such willingness to share data provides
constraints on how MMI systems might be designed.

In summary, privacy concerns need to be addressed to encourage aging
adults to adopt and use MMI systems. Adoption of “Fair Information Prac-
tices” such as the eight principles in the OECD Privacy Framework (2013) is
one approach. Another related approach is to provide people with granular
control over release of captured information (Caine and Hanania, 2013).

Age and Technology Attitudes

Attitudes toward health monitoring technologies differ across age
groups such that older adults tend to be more accepting than younger
adults (Beach et al., 2009). Also, they tend to be primarily concerned about
self-efficacy, or perceived ability to use the system (Lv et al., 2012).

Although older age had been associated with greater openness to adop-
tion of health monitoring technology, when accounting for disability status,
the effects of old age on openness are much smaller than those of disability
status (Beach et al., 2009). If, therefore, the imminent threat of losing health
or independence is one of the main motivating forces behind adoption of
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health monitoring technology in old age, then preventive interventions for
older adults may prove to be the most difficult to stage, as they would be
met with the most hesitation. Without an obvious and apparent cause for
concern, older adults may be reluctant to accept a new technology-based
intervention, even though they remain at higher risk of health decline.

A variety of technology adoption models and variants, such as the
Technology Acceptance Model (TAM: Davis, 1989), Universal Theory and
Acceptance and Use of Technology (UTAUT: Venkatesh, Thong, and Yu,
2012), and the Senior Technology Acceptance Model (STAM: Chen and
Chan, 2014), propose that adoption and use of technology depend on
the trade-offs between benefits (e.g., perceived usefulness) and costs (e.g.,
perceived ease of use) as represented in such models (Charness and Boot,
2009). With respect to predicting concerns and actions by people for secu-
rity and safety online, the protection motivation theory (Tsai et al., 2016)
is also a useful framework.

One recent technology adoption model relevant to MMI is the smart
wearable acceptance model (Li et al., 2019), which incorporates additional
factors such as compatibility with existing electronics, perceived stigma,
device performance (e.g., reliability), and health status. Challenges for com-
patibility with existing electronics might arise, for example, when trying to
switch a user from their preferred smartphone to one with a different oper-
ating system. Given that older adults learn at about half the rate of younger
adults (Charness et al., 2001), asking them to learn a new operating system
may result in poor enrollment in, and adherence to, an MMI system.

Intervention Framework

If we assume that older adults, who normatively have a variety of chronic
conditions and impairments (Buttorff, Ruder, and Bauman, 2017), are willing
to be monitored, and that systems can be devised that provide for adaptive
interventions, what type of interventions are people likely to accept? One
proposed hierarchy is “PRAS”—prevention, rehabilitation, augmentation,
substitution—(Charness, 2019), which suggests that if prevention is insuf-
ficient and an impairment develops, people will prefer rehabilitation first,
then augmentation to current capabilities (assistive devices, such as walkers,
hearing aids), and lastly substitution (e.g., prosthetics that replace a failed
function, such as pacemakers, cochlear implants).

STATE OF THE SCIENCE FOR MEASUREMENT, PREDICTION,
AND INTERVENTION USING MOBILE SYSTEMS

It is worth noting that any MMI system (a good example of a classical
information processing system: Newell and Simon, 1972) will have multiple
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components, including sensors, processors, algorithms to interpret sensor
data, transceivers (transmitters and receivers), and data storage capabilities
(see chapter by Cook). If intervention capabilities are built in, the system
will have actuator components that can alert or communicate with the
recipient (usually visual, auditory, and haptic output capabilities). A grow-
ing platform for monitoring health is the smartphone, which helped initi-
ate the field of mobile health, or mHealth (see chapter by Murnane and
Choudhury).

We did not locate any studies of MMI systems that incorporate the full
chain of measurement, prediction, and just-in-time intervention for anyone,
let alone older adults. A model system illustrating the full chain would be a
cardiac pacemaker device. It monitors heart electrical activity, decides that
it is irregular, and generates just-in-time pulses to regularize heartbeat). In
the absence of studies looking at the full chain, we examine issues around
each of the components, discussed next.

Measurement

Much of the literature concerning measurement capabilities of MMI
technologies that we uncovered consists of feasibility pilot projects aimed
at developing MMI technology systems. Many of these programs do not
test such technologies with older adults, probably because of concerns with
safety during simulated fall testing (studies that ask people to simulate
the range of fall types) and for convenience of development (e.g., use of a
student dormitory for Radio-frequency identification [RFID] tag testing).
These problems can be seen in a recent review of wearable sensors and
Internet of Things (IoT) monitoring for older adults (Baig et al., 2019).
The review by Baig and colleagues indicates the range of target behaviors
for measurement (the “what” question in Table 1). Those authors found
14 studies (from 12 projects) between 2015 and 2019 that met inclusion
criteria from an initial set of 327 studies. Seven had a focus on fall detec-
tion using wrist-worn devices or RFID tags. Others concerned monitor-
ing Activities of Daily Living (ADLs) using smartwatches, smartphones,
and smart insoles. Other studies reviewed used smart home environments
with passive sensors to monitor ADL and Instrumental Activities of Daily
Living (IADL) activity. Lastly, geriatric depression and dementia detection
(through classifying “forget” events with front door openings) were the
goals of two of the studies.

Based on examining some of the studies in that review, we suggest that
future measurement system development for MMI systems include older
adults in both the development and testing phases, though this may prove
problematic for fall simulation studies.
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Prediction

A largely untapped research area is prediction/inference using mobile
technology for older adults. By fusing data across time from multiple
sensors and including data from active monitoring components, such as
ecological momentary assessment (EMA) surveys, inferences can be made
about behavior patterns (Harari et al., 2016).

By fusing data intelligently, systems can generate “mood sensors.”
One study invited people to respond to EMA prompts about current mood
(Sandstrom et al., 2017) and used phone sensors to determine where they
were or directly queried their location with an EMA probe. That study
relied on the general public (Android smartphone users) downloading an
app (n = 12,310) and, given age-related technology adoption lag, enrolled
a sample where at least 78 percent of those who reported a birth year were
below the age of 45, a young to middle-aged sample.

More sophisticated inferences have been drawn through modeling,
using various classifier algorithms and deep learning on data sets that
contain large amounts of temporally tagged personal data in order to
forecast depressive affect in young and middle-aged adults (Suhara, Xu,
and Pentland, 2017) and loneliness in older adults (Sanchez et al., 2015).
However, having to use a supervised machine learning procedure (see chap-
ter by Rajkomar) somewhat limits the scalability of the approach, because
of the need to have a human in the loop to label/classify patterns.

Intervention

Behavioral research studies we reviewed that use mobile device data
typically do not intervene based on building up behavioral prediction
models of study participants. Intervention is a logical next step. Perhaps
because of lack of federal regulation, commercial enterprises have already
entered the intervention space. Facebook experimentally manipulated mood
for hundreds of thousands of its members by changing the information that
a user saw in their news feed (Kramer, Guillory, and Hancock, 2014).

Nonetheless, once a model has been validated—for instance, that
depressive affect has been detected and that it is predicted to worsen in
a few days (e.g., Suhara et al., 2017)—it would make sense to provide
referrals to professionals, or as research and technology advance, instanti-
ate validated interventions, particularly to head off conditions that are
potentially life-threatening. One such example is a model that predicts
that a suicide or homicide attempt is likely, and intervenes accordingly by
providing immediate access to a therapist. Suicides show a sharp increase
at older ages for men, and older cohorts have also experienced some of
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the largest suicide increases between 1999 and 2017 (e.g., > 50% for age
45-64; Hedegaard et al., 2018).

Another behavioral domain where prediction and intervention might
be valuable for older adults is falls, given that about 29 percent of older
adults reported experiencing a fall in the past year, and about 37 percent
of those falls were serious enough to require medical treatment (Bergen,
Stevens, and Burns, 2016). Balance and gait can be monitored and risk
of falling assessed and detected (e.g., for fixed sensor systems: Rantz et
al., 2015). If predicted risk rises above some threshold, the system could
prompt the monitored person to seek help, or possibly, could provide vali-
dated rehabilitation exercises.

Loneliness and social isolation might present another such domain for
MMI. About 20 percent of adults in the U.S. (16% of those age 65 and
older) and in the U.K. report significant loneliness (DiJulio et al., 2018),
with death of a loved one and health problems given as the top two reasons
for loneliness. If a trend that indicates significant loneliness is detected,
interventions might be offered via a software suite that aims to improve
social connectivity, such as in the PRISM clinical trial (Czaja et al., 2017).

Another area for MMI is the management of chronic conditions. About
81 percent of those age 65 and older have multiple chronic conditions
(Buttorff et al., 2017). Total population prevalence was about 60 percent
for one or more such conditions in the U.S. A study of heart failure (Evans
et al., 2016) is an example of where smart monitoring (examining data to
detect deviations from baseline for blood pressure, weight, heart-failure
questionnaire items) was used to generate text messages to home health
nurses who contacted participants.

MMI might also provide help in managing medication schedules. The
greater the number of chronic conditions, the greater the number of pre-
scriptions (Buttorff et al., 2017), possibly leading to complicated medica-
tion schedules, though medication adherence is sometimes better in older
adults than middle-aged ones (Park et al., 1999). Monitoring (e.g., smart
caps for bottled prescriptions) and intervention (prompts to the target
person) can be used to help people with medication adherence problems
to take medications as prescribed, with prompting more successful (d = .5)
than not prompting (d = .2; Conn et al., 2016).

Finally, supporting those with cognitive impairments due to normal
aging and disease (e.g., mild cognitive impairment, dementia) may provide
for greater independence and mitigate caregiver burden. If a significant
trend of increasing cognitive impairment were detected through long-term
individual monitoring, a prompt to seek professional care could be pro-
vided. Possibly, short-term interventions to assist people with dementia and
their caregivers with everyday tasks could be organized by using Quality of
Life Technology interventions such as virtual coaches (e.g., Schulz, 2012).
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A recent study showed promise in using mobile monitoring to differentiate
MCI and mild dementia from normal aging (Chen et al., 2019).

IS THERE AN APP FOR THAT?

Google and Apple online stores feature hundreds of thousands of appli-
cations (apps) aimed at addressing nearly all aspects of health and disease,
many with the goals of supporting MMI, including apps to help monitor
and manage medication adherence, weight, nutrition, physical fitness, blood
pressure, diabetes, sleep, and mood. Some apps track these activities and
variables through self-report or sensors within the smartphone itself, while
others rely on external sensors, including smartwatches, fitness trackers,
telehealth devices, and web-cameras.

Two critical general issues include the safety and efficacy of interven-
tions. (For other ways of evaluating apps on dimensions such as engage-
ment, functionality, aesthetics, information quality, and subjective quality,
see Choi et al., 2018.) Do these apps really benefit the user by improving
their health and well-being, and if so, are these improvements long-lasting?
And are there any potential negative consequences of use (e.g., risk of
harm)? Unfortunately, there is not a large, high-quality evidence base to
review, especially when it comes to long-term health outcomes. Further,
the large and rapidly increasing number of health apps prevents regulatory
agencies from thoroughly evaluating these issues for many technology-
based interventions.

In the United States, the Food and Drug Administration (FDA) regu-
lates medical devices. Recent guidance released by the FDA clarifies that
health apps that fall under the category of medical device may be regulated
only in cases in which there exists a potential risk to the user’s safety should
the app not work as intended (FDA, 2019). An app that uses gamification
to motivate the engagement in physical therapy might fall under the defini-
tion of a medical device, but the risk of malfunction is unlikely to result
in serious harm to the user. In contrast, an app that makes use of a mobile
device’s camera to image a skin lesion, and then uses an Al algorithm to
make a classification of whether the lesion is dangerous, would be an ex-
ample of a health app that the FDA would regulate. Should the algorithm
be ineffective, the user can be harmed (e.g., cost of missing cancerous lesion
or stress induced by a false alarm). Based on this guidance, many health
apps are not FDA regulated, meaning that their efficacy is uncertain, and
there is little incentive for app developers to conduct efficacy trials.

Specific to the issue of older adults, health apps (and peripheral devices
associated with them) for the most part are not developed and designed
considering the needs, preferences, and abilities of older adults. This can
be seen in human factors evaluations of existing health-related apps. Morey
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and colleagues (2019) reviewed popular apps with the aim of supporting
medication adherence and managing heart failure. Expert evaluation uncov-
ered deficiencies that would make these apps challenging for older adults to
use, including small and hard-to-see buttons, difficult-to-navigate menus,
confusing terminology, and other usability problems. Similar issues were
identified in evaluating pain management apps (Bhattarai, Newton-John,
and Phillips, 2017). Usability challenges have been noted in user testing as
well (e.g., Wildenbos et al., 2019). Many studies have identified difficulties
using hardware and software among older adults experiencing normative
age-related changes in perception and cognition. Design guidelines do exist
for how to reduce these challenges (Czaja et al., 2019). However, such
challenges are likely to be greater for older adults experiencing cognitive
impairment (e.g., MCI and dementia).

Reminder Efficacy

MMI technology has the potential to greatly benefit the success of inter-
ventions at home and in the community by promoting adherence to healthy
behaviors. Across a variety of domains, including pharmacological, behav-
ioral, exercise, and nutrition interventions, adherence can be quite poor,
resulting in a gap between the potential and actual benefit of a treatment.
For example, 50 percent of individuals prescribed a medication for chronic
conditions do not take that medication as prescribed (Brown and Bussell,
2011). MMI technology can serve two potential roles: 1) it can monitor
whether a behavior (e.g., medication bottle was opened) has occurred, and
2) it can provide reminders to engage in behaviors (e.g., taking a medica-
tion at a certain time).

There is a long history of study of methods to improve adherence, for
example, to health-related behaviors, and this has resulted in the publica-
tion of several systematic reviews. Although these reviews often focus on a
broad age range, they are informative with respect to anticipating impor-
tant issues older adults may face. With respect to medication management,
Nieuwlaat et al. (2014) conducted a comprehensive review of general
methods to improve adherence, and this was followed by a specific review
of all adherence interventions that were mediated by technology (Mistry
et al., 2015). Technology-based reminders included various telephone, text
messaging, and software-based reminders, and remote monitoring included
the use of telehealth devices and electronic drug monitoring. In general (for
technology and nontechnology-based adherence interventions), this 2014
Cochrane report arrived at the pessimistic assessment: “Even the most
effective interventions did not lead to large improvements in adherence or
clinical outcomes” (p. 2). For a variety of reasons, one might expect tech-
nology-based adherence interventions to be more successful, but this more
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focused review concluded that there was limited evidence for effectiveness,
and that adherence-promoting technology “will need to improve if clini-
cally important effects are to be realized” (p. €190). Both Nieuwlaat et al.
and the Cochrane report noted the poor quality of many studies that have
been conducted to date. Additional, high-powered, well-designed studies
(with appropriate control group contrasts) are clearly needed. Further, as
discussed later, “one-size-fits-all” interventions should be contrasted with
personalized, customizable, and adaptive interventions to explore whether
these types of interventions provide additional benefit.

Simons et al. (2016) reached similarly pessimistic conclusions about the
efficacy of “brain training” cognitive interventions for impact on everyday
functioning, for far transfer measures (e.g., driving safety) compared to near
transfer ones (improved performance on the training games). Given con-
cerns with sample inclusion/exclusion rules that tend to exclude comorbid
older adults (He et al., 2016), small sample sizes, lack of adequate control
groups, and lack of long-term assessment, a cautious conclusion is that the
Scottish verdict “not proven” best describes the efficacy of MMI systems.

Beyond efficacy, there is also the issue of cost effectiveness. The largest-
scale clinical trial (N = 3230 people with diabetes, COPD, or heart failure)
conducted by the National Health Service in the U.K. (Steventon et al.,
2012) showed that a telehealth intervention for chronic conditions was
not cost effective compared to usual treatment (Henderson et al., 2013),
primarily because of equipment costs. Technology costs usually diminish
over time (a recent exception being the cost of “flagship” smartphones in
the past few years), potentially altering that conclusion as technologies
become more affordable.

INTERVENTION STRATEGIES

Traditional intervention strategies often follow a one-size-fits-all
approach, with the dose of the intervention identical or similar across
individuals and changing infrequently over time. An exercise intervention,
for example, might have individuals engage in a walking program in which
participants are asked to walk a certain amount of time for a certain num-
ber of days each week. Likewise, an individual with hypertension could
be prescribed medication at a dose that is adjusted over time based on
occasional blood pressure readings. These interventions have the potential,
unfortunately, to ignore the varying needs and attributes of the individual
and might be insensitive or slow to adapt to the time-varying intervention
context.

Just-in-time adaptive interventions (JITAIs) represent an exciting new
approach that can be implemented through a combination of mobile and
sensor-based technologies (Nahum-Shani et al., 2017). JITAIs are character-
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ized by their ability to monitor the state and the context of the individual
and, based on this information, provide the appropriate amount and type
of intervention at the right time. For example, when sedentary behavior is
detected by a worn accelerometer, an app-based JITAI might suggest that
the individual engage in physical activity. Further, the system might suggest
a specific activity based on the time and weather conditions. Although there
appears to be great promise to the approach (Wang and Miller, 2019), addi-
tional higher-powered studies are needed to determine the success of JITAIs
over other approaches (Hardeman et al., 2019), and to address the unique
issues involved in designing successful JITAIs for older adults.

LIMITATIONS FOR USE OF MOBILE AND
SENSOR TECHNOLOGY IN HEALTH

Readiness in Aging Populations

When designing a technological intervention, it is important to consider
whether the target population is likely to have basic computer experience,
or a home broadband connection. In early 2019, only an estimated 53 per-
cent of older adults owned a smartphone (Pew Research Center, 2019),
meaning that technologies incorporating the use of a mobile application
may not be practical for everyone without significant training for smart-
phone use. Additionally, older smartphone owners are much less proficient
than younger ones (Roque and Boot, 2016). Likewise, although 73 percent
of older adults (aged 65+) use the internet, only 59 percent report having a
home broadband connection (Pew Research Center, 2019), which is critical
for telehealth, mostly done with videoconferencing. Also, only 48 percent
of “older-old adults” (aged 75+) use the internet, compared to 78 percent of
“younger-old adults” (aged 65-74) (Czaja et al., 2019). Thus, computer
and technology literacy are a barrier to adoption, though older adults can
significantly benefit from computer literacy interventions, and more specifi-
cally, eHealth literacy interventions, resulting in positive changes to health
care (Xie, 2011).

The Challenge of Subgroups with Low Tech Adoption

Not all older adults aged 65 and older share the same knowledge about
and access to technology products. We have already seen that more specific
age groups can be established within the classification of older adults, and
these subgroups have different levels of technology usage. In addition to
age, education/income and ethnicity are also important factors.

Across age groups, 56 percent of people with an income lower than
$30,000 have a home internet connection, compared to 92 percent of those
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who make over $75,000. Older adults who have retired may be living with
a restricted budget. It is estimated that 9 percent of the older adults in
America live below the poverty level (Czaja et al., 2019). Therefore, even
those who are willing and cognitively able to adopt new technology and
participate in an intervention may not be able to afford to do so. Among
older adults, racial minorities are more likely to face the challenges of
poverty, as are women and those who live by themselves. Racial minorities
and those with lower socioeconomic status are also more likely to rely on
a smartphone for internet access, without having a home broadband con-
nection (Pew Research Center, 2019).

Thus, we cannot make broad assumptions about readiness and ac-
ceptance of technology. As MMI technology continues to develop, it will
be important to consider that older adults may need to adopt an entire
infrastructure of technology (e.g., home network, broadband subscription,
specific smartphone), and not just that which is necessary for the MMI
system itself.

FUTURE DIRECTIONS FOR MOBILE TECHNOLOGY
SUPPORTING ADAPTIVE AGING

Several outcome criteria can be envisioned for assessing effectiveness
of MMI systems as they mature, drawing on the RE-AIM framework
(Glasgow, Vogt, and Boles, 1999) that was developed in the public health
intervention field. RE-AIM criteria include reach (the percentage and risk
characteristics of persons who receive or are affected by a policy or pro-
gram), efficacy (positive and negative outcomes for the intervention), adop-
tion (proportion and representativeness of settings, implementation (fidelity
of delivery of the program: effectiveness = efficacy x implementation), and
maintenance (long-term maintenance of behavior change).

Assuming that researchers can demonstrate MMI efficacy with typi-
cal, unrepresentative (He et al., 2016) older adult samples through short-
duration, high-internal-validity studies (e.g., phase three clinical trials),
what challenges would remain? Pragmatic clinical trials (Ford and Norrie,
2016) are a way to evaluate implementation and adoption. Current home
monitoring studies and interventions rely on volunteers, and older vol-
unteers are more likely to have higher levels of education and income, as
well as better health and social integration, and less likely to be minority
than white (Howell, 2010). Further, in our studies (e.g., Evans et al., 2016)
lower SES homes and apartments presented challenging environments for
deployment of monitoring equipment. Internet access, a necessity for MMI
systems, can be costly and difficult to arrange in rural settings. Broadening
participation by underserved populations in pragmatic trials is a worthy
goal. Also, once a system either receives FDA approval or earns a best clini-
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cal practice designation, ensuring that it is affordable and implementable is
an important next step.

Even if a system proves to be efficacious and cost effective, often-
overlooked features of cutting-edge technology are maintenance and
obsolescence. Maintenance can be problematic in part because companies
abandon commercial product lines, or go out of business. A good example
was a recent RCT pilot study that showed significant improvement in fitness
relative to a wait list control for sedentary middle-aged and older adults.
It used a Jawbone UP24 monitor (wearable fitness tracker) in conjunction
with an iPad app, and a thigh-worn ActivPAL monitor (Lyons et al., 2017).
Jawbone discontinued the fitness tracker, so it became an “orphaned”
device. To what extent was that specific hardware and software platform
necessary for efficacy?

Further, systems based on mobile devices need to contend with addi-
tional challenges. U.S. consumers apparently change smartphones about
every two years (Ng, 2019) though that period is lengthening, perhaps
in response to smartphone cost increases and slowing improvement in
functionality. Our suspicion is that aging adults may change phones less
frequently, based on evidence that of those age 65 and older, 53 percent
own smartphones and 39 percent own nonsmart cellphones compared to
ages 18-29, where 96 percent own smartphones and 4 percent own non-
smart cellphones (Pew Research Center, 2019). This would mean that older
adults are likely at greater risk for device obsolescence. Mobile operating
system changes by Apple (i0S) and Google (Android OS) can “break”
applications, so apps must be maintained and updated. Considering life-
spans from onset of chronic conditions, a 10- to 20-year MMI program
is conceivable. Focusing on technology functions rather than devices (e.g.,
Skubic et al., 2014) can address obsolescence.

Finally, maintenance, in the RE-AIM sense, assumes that people will
continue to use the MMI system over extended periods of time (years) to
support positive changes. Chronic conditions, such as hypertension, require
vigilance, and as noted earlier, adherence to taking a prescribed medication
is very poor in the general population and for older adults. There is little
information available about how best to motivate aging adults to adhere
to treatments over long-term intervals, especially when payment to partici-
pants is unavailable.

A recent study (Scherbina et al., 2019) of 2,783 iPhone users age 18
and older (M = 48 years, a middle-aged sample) used a smartphone app to
try to increase physical activity over a four-week period; the app offered
four different intervention types for one week each (crossover design)
following a one-week baseline period. All conditions increased step count
about 10 percent for those who completed at least one intervention; how-
ever, that represented 1,075 people only—a 60 percent attrition rate that
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does not bode well for long-term adherence. Only 493 people completed
all interventions, representing an attrition rate of 83 percent.

SUGGESTIONS FOR FUTURE MMI STUDIES
AND RESEARCH PRIORITIES

We agree with earlier conclusions (e.g., Joe and Demiris, 2013) that too
many studies are very short term pilot or feasibility studies. It was difficult to
locate robust studies demonstrating MMI efficacy using older adult popula-
tions. None followed the full chain of measurement, prediction/inference, and
just-in-time intervention, so the following could be priority areas.

Potential Research Priorities for MMI Study Design

Future studies need to address weaknesses such as small, unrepre-
sentative older adult samples, lack of adequate control groups, and
lack of long-term assessment. This may entail funding for a large,
multisite study like ACTIVE (Ball et al., 2002).

Effective MMI systems can be facilitated by partnerships between
the research community and industry to enhance usability, scal-
ability, and deployment.

Given that multimorbidity becomes the norm in old age, MMI
studies need to relax exclusion rules to enhance generalizability of
results.

MMI systems should be designed to honor/respect privacy rights.

Potential Research Priorities for MMI Technology Acceptability

Even if an MMI system can show efficacy and cost effectiveness, its
value for enhancing well-being in our aging population will be in jeopardy
if it is not adopted and used.

Studies of adoption and use of MMI systems need extended time
frames (e.g., decades) to assess longer-term efficacy and cost effective-
ness commensurate with lengthened life spans burdened by later life
chronic diseases.

Studies need to incorporate diverse samples including young-old,
middle-old, and old-old users; those with disabilities; and disad-
vantaged groups to gauge comparative effectiveness of MMI versus
home-based sensor technology.

It would be ideal to tap into existing longitudinal studies, such
as National Health and Aging Trends Study (NHATS), Health
and Retirement Study (HRS), National Health and Nutrition
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Examination Survey (NHANES) to create subsample MMI study
opportunities.

e Encourage interdisciplinary MMI teams encompassing engineer-
ing, computer science, data science, health, and behavioral science
through interagency projects.
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Mobile and Sensor Technology as a Tool
for Health Measurement, Management,
and Research with Aging Populations

Elizabeth Murnane' and Tanzeem Choudhury?

INTRODUCTION

Advances in medicine, science, and technology over the last century
have produced demographic changes—and in particular, a growing popu-
lation of older adults. Life expectancy is up, premature death is down,
and people are living longer than ever before (NCHS, 2019). Further, the
overall age distribution is shifting, with more people in the U.S. now over
age 60 than under age 15 (Carstensen et al., 2015); and over the next 20 to
30 years, the number of adults over 65 is estimated to double, to account
for 1/5 of the global population (WHO, 2013). While a huge achievement,
aging societies also present novel challenges to health care. In particular,
as incidence of infectious illnesses common in the early 20th century fell
and people started living longer, rates have considerably grown for non-
communicable chronic diseases, mental health problems, and age-related
declines (WHO, 2015). Such conditions are now the leading cause of sick-
ness, disability, and death around the world and account for over 70% of
the global burden of disease (Forouzanfar et al., 2016; WHO, 2014). Apart
from mortality, most chronic diseases also negatively impact functioning
and overall quality of life (Megari, 2013). These statistics also foreshadow
an unsustainable financial burden (Banerjee, 2017), with global health care
expenditures anticipated to reach $47 trillion by 2030 (Bloom et al., 2018),
as prevalence continues to increase worldwide (Saranummi et al., 2013).
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For older adults, the occurrence of such conditions is even higher and
estimated to continue growing. Over 80% of people 65 years and older
have at least one chronic illness (Anderson et al., 2002), and over 75%
have two or more (NCOA, 2015), including mental health issues such as
anxiety, dementia, depression, substance abuse, and elevated suicide rates
(NCOA, 2015). Critically, however, 2/3 of seniors are unable to receive the
treatment they need (NIMH, 2014).

Important to note is that these conditions are linked with how peo-
ple live their lives. Today’s top risk factors for premature death all relate
to lifestyle choices (diet, physical activity, smoking, and excessive alcohol
consumption) (Mensah, 2006), with such behaviors contributing more to
mortality rates than infectious or toxic agents (Mokdad et al., 2004). Worth
acknowledging is the major influence environmental exposures, quality of
care, and socioeconomic factors do have on health, including inequities
(Saranummi et al., 2013); and it is not necessarily fair to consider, for exam-
ple, poor diet or physical inactivity strictly as “choices” if a person lives
in a food desert or an area with poor walkability. Still, research increas-
ingly links behavioral factors with physiological and psychological wellness,
including during the later life span (Cowie et al., 2016; Macera et al., 2017),
contributing to a growing consensus that “the single greatest opportunity
to improve health and reduce premature deaths lies in personal behavior”
(Schroeder, 2007, p. 1,222) and that for older people specifically, behavior-
based approaches can promote positive aging (Cowie et al., 2016). Indeed,
the health domain is witnessing a major shift (Christensen et al., 2009) from
an illness-centric, visit-test-treat model toward more proactive, self-driven
strategies, with a focus on prevention and overall well-being (Swan, 2012).
On the research front, public agencies, including the National Institutes of
Health, are launching programs to prioritize behavior change (Nielsen et
al., 2018), and clinical approaches are increasingly incorporating behavioral
treatments, which not only get people more directly involved in their own
care but also help reduce pharmacological risks (Petrovic et al., 2012).

Technology presents a powerful mechanism for monitoring and man-
aging behavior in such ways, while reducing costs and buffering physician
shortages. Digital health solutions that combine mobile applications, sen-
sors, and wearables can provide personalized diagnosis and detection of
health indicators as well as care and coaching that is continuously available
and directly delivered to end-users. Further, such strategies can reach those
facing financial and physical barriers to accessing care (Mohr et al., 2010;
2013) and also act as a window through which researchers can examine
and understand the practices, needs, and outcomes of traditionally under-
studied and underserved groups.

This chapter overviews the use of mobile and sensor technologies as
a tool for both health research as well as health management, to support
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adaptive aging efforts. We present examples from our own and others’
research in this emerging area to illustrate the promising opportunities
mHealth offers, while also highlighting important future steps and critical
considerations.

MOBILE HEALTH (MHEALTH)

What Is mHealth?

Mobile health, or mHealth, broadly refers to the use of mobile phones
or other wireless devices to support health care (Kay et al., 2011). mHealth
grew out of telehealth, with both enabled by the introduction of modern
telecommunication and information technology as a way to deliver health
care from a distance. mHealth and telehealth can be considered subsets
of eHealth (Oh et al., 2005), an umbrella term that describes the local
or remote use of digital data or technology to support health care (Della
Mea, 2001). Beyond telehealth services, eHealth includes electronic health
records, clinical decision support systems, and physician instruction tools.
The clinical use of such technologies is often referred to as health or medical
informatics and is concerned with the collection, storage, retrieval, man-
agement, and use of health information by a patient’s care providers. In
this chapter, however, we focus less on the clinical context and more on
the at-home, self-driven, vernacular use of mHealth tools (which may be
in combination with or entirely outside of physician-guided care), focusing
on “people” rather than exclusively “patients.”

To date, the bulk of mHealth attention has been on mobile phones,
which continue to gain sophistication in terms of data capture features and
interactive affordances. A variety of wearable devices (e.g., eyewear, rings,
shoes, watches, wristbands) are now entering the retail market with similar
capabilities. Such functionality permits broad-scale, naturalistic collection
of health-relevant data in an extremely granular and unobtrusive manner.
The ability to observe behavior continuously and in context also makes it
possible to tailor interventions to optimize effectiveness for an individual
user, plus these technologies provide an interface through which such feed-
back can be delivered.

Adoption and Acceptability of mHealth Tools by Older Adults

Recent years have seen a swell in personal technology penetration, espe-
cially mobile phones. In the U.S., over 95% of people own mobile phones,
with over 80% owning smartphones specifically (Pew, 2017); globally, 85%
of adults own a mobile phone, with a median of 45-76% owning smart-
phones in emerging and advanced economies (Pew, 2018). Smartphone
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ownership does decline with age, but that trend is changing over time; and
studies indicate that stereotypes of older adults being unable and unwilling
to try new technologies is a misconception (Erber and Szuchman, 2014;
Kurniawan, 2008). Over 3/4 of individuals aged 65+ own a cellphone and
1/5 a smartphone, nearly 1/2 of those 75+ own a cellphone (Anderson, 2017;
Anderson and Perrin, 2017; Levine et al., 2016), and research observes fre-
quent use by older adults of text messaging especially, given the low usage
barriers (Schiilke et al., 2010). Further, studies show more older individuals
register for mobile phones every day, with market research indicating that
smartphone use among some older adult segments is actually growing at a
faster rate compared to other age groups (Deloitte, 2017).

In terms of attitudes, studies find older adults exhibit open-minded
receptivity and willingness toward mHealth (de Veer et al., 20135; Parker et
al., 2013; Zhou et al., 2014), especially tools to monitor and manage symp-
toms, encourage physical activity, and remind of appointments (Klimova,
2016). However, older adults also express perceptions that modern technol-
ogy is not necessarily designed to suit their abilities (Goddard and Nicolle,
2012). mHealth adoption may therefore not be constrained by seniors’
disinterest but rather devices’ failure to meet their needs—needs designers
could better consider to accommodate cognitive, motor, visual, or other
age-related changes.

Common Applications of mHealth in the Healthy Aging Context

mHealth technologies often focus on diagnosis, monitoring, and/or
intervention; and their functionality can be broadly organized across an
information flow involving data input, translation, and output (Murnane,
2017). First, rich datasets about behavior can be collected in context,
through both manual self-report and automated sensing. From this infor-
mation, health metrics can be computed, symptoms detected, and future
status forecasted. Given this model of an individual’s health and contrib-
uting factors, tailored feedback can then be delivered to end-users, care
teams, and other stakeholders to support awareness, action, and long-term
management (Kang et al., 2010).

With specific respect to older adults’ use of mHealth, early work com-
monly focused on collecting data about symptom levels (e.g., of depression,
fatigue, pain), tracking medication intake and side effects, delivering health
education and literacy materials, and serving reminders through text mes-
sages or notifications to adhere to medication schedules or attend health
care appointments (Free et al., 2013; Tomlinson et al., 2013). As the field
continues to advance, we are seeing more sophisticated monitoring—for
example, fall detection systems (Chaudhuri et al., 2014; Stone and Skubic,
2015) and lower-burden interfaces tailored to older adults—for example,
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designed with motor, visual, or other age-related changes in mind (Adams
et al., 2018; Wildenbos et al., 2018). Further details and examples of such
mHealth applications are presented in the next section.

MHEALTH FOR MONITORING AND INTERVENTION

Collecting Data Relevant to Behavior, Health, and Contributing Factors

A central feature of mHealth systems is an ability to capture data. This
input provides details about the user’s behaviors, environment, or other
personal attributes relevant to the health outcome(s) the tool is targeting.
These data can be collected manually by a user, automatically by sensors,
or through some hybrid approach. Here we overview ways mHealth tech-
nology captures data, providing examples and pointing out advantages,
drawbacks, and tradeoffs among these various approaches.

Manual Reporting

People have self-tracked health information long before digital tools
existed to support the activity. In the 1940s, clinical research began using
written diaries, in which people could self-report symptoms and health
actions as they occurred (Allport, 1942; Verbrugge, 1980). While such pen-
and-paper approaches are familiar and easy to use for many people, they
do face well-known limitations, including the risk of forgetfulness, retro-
spection errors, and inadherence (Bolger et al., 2003), especially for older
populations (Adams et al., 2017). Over the past few decades, research has
looked at how technology can help address these limitations. At first, studies
used digital devices, such as pagers, pre-programmed wristwatches, or text
messages to deliver reminders to record information, though the recording
itself was still made on paper. This sort of prompted self-report is associ-
ated with ecological momentary assessment (EMA; Stone and Shiffman,
1994) and experience sampling method (ESM; Csikszentmihalyi and Larson,
2014), which are methods used to collect information about various aspects
of daily life in the moments they are being experienced.

Today, mHealth research on applying this style of in situ reporting
to aging contexts has largely focused on the smartphone, given both its
ubiquity as well as its support for rich interactions. Typically targeted indi-
cators include physical activity (Maher et al., 2018), mental health (Moore
et al., 2016), symptoms of chronic conditions such as diabetes (Whitlock
and McLaughlin, 2012) or pain (Adams et al., 2017; Garcia Palacios et
al., 2014), and more general well-being indicators e.g., mood, sleep, and
social interactions (Doyle et al., 2014). Research shows that older adults
would additionally like to track restful and stress-relief activities as well
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as healthy eating (Davidson and Jensen, 2013) and abnormal changes in
health (Caldeira et al., 2016).

The manual capture of data is associated with several benefits. Self-
tracking can empower users with a sense of agency (Murnane et al., 2016)
and foster self-awareness (Bentley et al., 2013; Choe et al., 2014). The
“obtrusiveness” is the main advantage, as it enhances mindfulness about
behavioral choices and adherence to goals (Kopp, 1988; Korotitsch and
Nelson-Gray, 1999). Further, manual tracking allows more personal control
over what information is disclosed, which is important to older adults from
a privacy perspective (Consolvo, et al., 2004a; 2004b).

However, manual self-tracking is associated with disadvantages as well.
Foremost, self-report can be burdensome (Connelly et al., 2006) due to the
time and effort it requires. This is a particular challenge if a technology is
intended for long-term use (e.g., to manage a chronic health condition).
Data inaccuracy can also occur in cases where a person’s capacity for
reliable self-assessment is compromised, for instance due to cognitive or
memory declines. Further, while increased self-awareness can induce desir-
able behavioral changes, psychological reactance can also result by drawing
one’s attention to uncomfortable symptoms or thoughts (Kohl et al., 2013).
Finally, it can be infeasible for a person to capture the array and granular-
ity of data necessary for a system to produce a sufficiently comprehensive
profile about that individual, comprising the multiple personal variables,
behavioral determinants, and other indicators needed to accurately model
a health outcome of interest (Bentley et al., 2013). This motivates more
system-driven approaches to data collection that are either fully automated
or that complement self-report with passively captured information.

Passive Sensing

With automated or “passive” data collection, physiological or behav-
ioral data are captured using sensors embedded in phones, wearables, or
surrounding environments. As mentioned, the mobile phone has rapidly
evolved into a powerful computing platform, with a variety of sensors for
capturing motion (e.g., accelerometers, gravity sensors, gyroscopes), loca-
tion (e.g., GPS, orientation sensors, magnetometers), and environmental
data (e.g., barometers, photometers, thermometers, cameras, microphones).
Reviews provide a summary of prominent health-oriented smartphone
sensing systems (Chen et al., 2014; Cornet and Holden, 2018; Klasnja
and Pratt, 2012). Much existing work on mobile sensing for older popu-
lations has focused on passively tracking mobility—for example, using
accelerometer and GPS data to assess physical activity and frailty (Castro
et al., 2015) or automate standing and balance tests based on inertial sen-
sors (Madhushri et al., 2016). Another recent thrust aims to determine
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“digital biomarkers” of older adult functioning, especially for cognitive
declines (Piau et al., 2019) or to derive computational proxies for subjec-
tively experienced symptoms, such as pain intensity (Aung et al., 2016).
Speech-based biomarkers are also becoming more robust, including to
assess neurodegeneration in older adults (Cormack et al., 2019), such as
in Parkinson’s disease (Moro-Velazquez et al., 2019). Rather than utilizing
hardware sensors, “soft sensing” captures data from software usage logs
to passively infer health indicators (De Choudhury, 2014), for example, to
predict cognitive declines in older adults based on smartphone use, based
on features including app switching, bursts of app use, and the daily timing
of use (Gordon et al., 2019).

On-body sensing approaches have used a variety of wearable sensors
over the years, such as pedometers (Consolvo et al., 2006; Lin et al., 2006)
and biometric sensors like electrocardiography (ECG) (de Oliveira and
Oliver, 2008) to capture sound, temperature, light, and humidity among
other inputs (Choudhury et al., 2008). Many of the recent commercial
wearable devices for healthy monitoring (e.g., Apple watch, Fitbit) are
essentially accelerometer-based wristbands that passively monitor activity
and sleep (Rawassizadeh et al., 2015); some newer models incorporate
additional sensors, for instance, to measure heart rate or galvanic skin
response, and new form factors (e.g., the Oura ring) are also emerging. For
older adults, most applications again focus on measuring mobility (De Bruin
et al., 2008) as well as cardiac vital signs (Baig et al., 2013). Wearable
device development continues advancing, including to incorporate sensors
into clothes and jewelry. For instance, e-textile pants have been developed
to collect data about acceleration, angular velocity, and pressure in order to
assess motion impairments in older users (Liu et al., 2008), while the recent
Phyjama system can monitor older adults’ heart and respiration rates as
well as detect posture during naps (Kiaghadi et al., 2019). As another exam-
ple, the Smart Jewelry Bracelet embeds an accelerometer, gyroscope, and
flex and temperature sensors to collect data on which machine learning is
run to automatically distinguish regular movement from potential physical
attacks or falls (Patel and Hasan, 2018).

The main disadvantages associated with on-body sensing are poten-
tial discomfort of wearing the device, its limited battery life, and the fact
that smaller (e.g., wrist- or finger-worn) form factors constrain the sen-
sors that can be contained, although battery advances and miniaturiza-
tion are helping address some of these issues (Jayatilaka et al., 2019;
Rawassizadeh et al., 2015). As with manual data collection, forgetfulness
can be an issue for passive strategies, given a user may forget to wear or
charge the sensing device, especially potentially an older user with declin-
ing memory. Additionally, older adults’ drier skin is also known to impede
the responsiveness of capacitive interfaces (Merilampi and Sirkka, 2016).
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As environment-based, contactless sensors are not as affected by these
constraints, researchers have also been exploring how instrumented homes
and other spaces can automatically capture health data. One early system
captured weight using a scale built into the toilet, heart rate data using an
ECG monitor in the tub, and body temperature from a bed sensor (Ogawa
et al., 1998; Tamura et al., 1998). More recently, others have placed sensors
to automatically collect health metrics into furniture like chairs (Griffiths
et al.,, 2014) or mattresses (Ko et al., 2015). Internet of Things (IoT)-
connected smart homes and hospitals could further extend such capability
to numerous other objects in living spaces or dedicated care environments
(Marques, 2019). Regarding older adults, systems have used radio signals
to detect falls (Tian et al., 2018), measure gait velocity and stride length
(Hsu et al., 2017a), and monitor insomnia and sleep (Hsu et al., 2017b).
Computer vision researchers have also developed contactless approaches
using depth and thermal sensors to automatically watch for acute inci-
dents (e.g., fever, immobility, substance abuse) as well as clinically relevant
long-term activities (e.g., eating, restroom use, sleeping) for seniors living
independently (Luo et al., 2017; 2018).

Overall, automated sensing helps relieve user burdens by reducing both
the time and the mental overhead associated with self-tracking, plus sensed
data can be more accurate and granular than manually tracked data. Passive
sensing can also capture informative quantitative signals that are impercep-
tible to the person generating them (Whitson, 2013). However, sensors can
be privacy invasive (Reeder et al., 2016) or uncomfortable to wear for older
adults (Steele et al., 2009), and they can reduce personal awareness about
collected data (Li, 2009). Automated tracking can also generate massive
volumes of data that impose storage and security challenges. In addition,
while automatic data collection can work well to acquire some objective
information like heart rate or location, accuracy is still elusive for some
types of behavioral tracking (e.g., food intake) especially outside the lab,
and sensing does not lend itself to measurement of subjective experiences.

Hybrid and Semi-automated Approaches to Health Measurement

Hybrid strategies that support both manual and passive modes, includ-
ing adaptively shifting between the two based on user status, may help to
relieve burdens while preserving agency, autonomy, and opportunities for
experiential sharing and self-reflection. One early hybrid example is the
UbiFit system, which automatically inferred walking, running, and cycling
but also allowed the user to add activities it could not automatically track
like yoga or swimming (Consolvo et al., 2008). To infer activities, UbiFit
made use of the similarly seminal Mobile Sensing Platform (Choudhury
et al., 2008), which was extended in follow-up work to passively assess
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older adults’ physical and mental well-being based on a combination of
accelerometer, barometer, and audio data, using an ensemble of classifiers
and privacy-sensitive speech-processing techniques (Rabbi et al., 2011).

Recently, researchers have worked to formally characterize the spec-
trum from fully manual, to semi-automated, to fully automated tracking,
including to identify strengths and weaknesses of these various approaches
and their respective applicability for various contexts, populations, and
health targets (Choe et al., 2017). The OmniTrack system develops an
architecture that instantiates such principles and enables users to flexibly
define custom tracking setups (Kim et al., 2017).

Digitally Delivered Informatics and Interventions

In addition to collecting data and analyzing them to derive health
metrics, the other important feature of mHealth systems is the representa-
tion of this information through legible feedback that provides opportunities
for self-awareness, wellness management, and, potentially, behavior change.
However, compared to the aforementioned work to develop mHealth-
based data collection and health assessment techniques, the research on
the informatics and interventions side of the equation is more limited
for aging groups. As mentioned, most interfaces focus on delivering text-
based reminders and nudges (e.g., to take medication, complete condition-
specific tasks, or perform general physical activity); see Klimova (2016)
and Changizi (2017) for reviews. Or, given that the field is still emerging,
work often offers roadmaps to chart out future directions for mHealth
interventions (Faiola et al., 2019) but has not yet reached the implementa-
tion stage. Such ideas that are gaining increasing interest include virtual
health advisors, robotic assistants, or commodity devices that supply neuro-
feedback for stroke rehabilitation and cognitive functioning in elders.

Feedback Design Dimensions

In designing mHealth interventions, important dimensions to consider
are the feedback’s format, delivery medium, attentional demand, prescrip-
tiveness, and level of personalization. Existing mHealth systems largely
display information in a visual format (e.g., text, charts, or other graphics).
In the aging context, natural language and haptic feedback are increasingly
being explored—for example, to support stroke rehabilitation (Micallef et
al., 2016) or improve walking stability (Costa et al., 2015), as such formats
are seen as intuitive alternatives to graphical user interfaces for low-vision
older users. However, age-related declines in hearing or motor skills can
present usage barriers for audio- or tangible-based interaction, and such
usability trade-offs must be weighed as appropriate for a specific applica-
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tion. Regarding the delivery medium, smartphone screens do predominate,
though other mechanisms include wearable displays, smart speakers, or
virtual reality, including low-cost cardboard viewers that wrap around a
smartphone to make the experience more immersive, and built environments
can deliver information via walls or other objects in one’s living or work
spaces (Liu et al., 2016). Important considerations when selecting a feed-
back medium are affordability and usability as well as ensuring information
receipt, especially if time- or context-sensitive. This makes phones attractive
due to their portability and the tendency for users to keep them nearby, plus
it relieves the need to carry a separate, dedicated health management device.

In terms of attentional demand, feedback can be provided via subtle
cues or more conspicuously. Ambient displays often focus on aesthetics and
aim to integrate well into the environment without being distracting, while
overt feedback more directly demands that a person notices and engages
with it (Matthews et al., 2007). Just-in-time interventions, which deliver
personalized, contextually aware, and well-timed feedback, tend to fall at
the overt end of this spectrum; see Nahum-Shani et al. (2014) for a review.
On the more ambient side, research focusing on older adults has explored
physical artifacts and portrait-based displays, such as a touch-screen tablet
placed inside a wood frame (Consolvo et al., 2004) or a photograph border
that uses butterflies, trees, and swans to represent daily activity, health,
and relationship information (Mynatt et al., 2001). Recent work has built
on these foundations to explore the use of ambient displays and visualiza-
tions to promote older adults’ exercise (Rodriguez et al., 2013), medication
adherence (Zarate-Bravo et al., 2016), and intergenerational connectedness
(Cornejo et al., 2013).

Prescriptiveness refers to whether a tool’s feedback is more directive
versus descriptive. On the prescriptive side, feedback might leave little room
for user interpretation; for example, the MyBehavior system (Rabbi et al.,
2015) conveys dietary feedback with explicit directives (e.g., “Avoid large
meal”). On the other hand, many existing personal informatics research
apps and consumer tools provide more open-ended, descriptive reports (e.g.,
a chart of step counts across the week) that leave the interpretation to the
user. Each style comes with tradeoffs to consider, such as the user’s (in)ability
to do this sensemaking and whether personal value might be derived from
the deliberate effort of determining how to act on presented information.

Finally, the level of personalization is important to consider. In the
aging context, pursuing more personalized and adaptive solutions is likely
worthwhile, given the variety in older adults’ expressed preferences regard-
ing health topics to track (Davidson and Jensen 2013), together with the
fact that “older adults” can actually span multiple decades in age and may
have therefore experienced highly variable historical contexts, life circum-
stances, and health trajectories.
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Overall, this is not meant to be an exhaustive set of all the possible
attributes feedback can possess. Other characteristics to consider include
audience (e.g., private vs. public viewability), scope of input (e.g., personal-,
family-, or community-level data), and data permanence (e.g., temporary
vs. archival), among a variety of other possible dimensions. Still, we see
format, delivery medium, attentional demand, prescriptiveness, and person-
alization as key design levers to be configured when deciding how informa-
tion will be conveyed by mHealth technology for adaptive aging.

mHealth as a Research Tool

Beyond supporting diagnosis, treatment, and long-term care, mHealth
approaches can help drive basic research to advance fundamental scientific
understanding about health and related behaviors in naturalistic settings,
over longitudinal periods, and with large and diverse groups.

Open Platforms

To date, there have been a number of academic projects that contribute
reusable and extensible mHealth research platforms for capturing passive
and self-reported data as well as testing interventions at scale. AWARE
(Ferreira et al., 2015) and Purple Robot (CBITS, 2015) provide access to
the Android sensor framework, and since its initial introduction, AWARE’s
development team has continued to expand its functionality, for example,
to add support for the iOS operating system. MyExperience (Froehlich et
al., 2007) similarly supported passive sensing, together with context- and
physiologically triggered prompts for subjective self-reports. In addition to
data collection, the open-source Ohmage toolkit (Ramanathan et al., 2012)
offers functionality specifically aimed at visualizing and analyzing captured
data. The Open mHealth Platform (Estrin and Sim, 2010) aims to organize
a community around developing a standard for mobile health data. Impor-
tant to note, however, is that these open platforms have been developed for
general purpose use, which motivates research to investigate and take steps
to extend their accuracy, coverage, and overall appropriateness when used
by older populations and applied to adaptive aging contexts.

Through the deployment of such platforms, it is possible to conduct
research that circumvents limitations of standard scientific approaches.
Specifically, while lab studies enable rigorous control over conditions,
experiments depend on substantial experimenter labor, are costly to con-
duct, face known issues with sample representativeness, and do not support
examining phenomena “in the wild” during everyday life and over time.
Randomized controlled trials (RCTs) get out of the lab to test interven-
tions with larger samples and for longer periods; however, RCTs are also
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resource intensive, which precludes many important trials from ever being
conducted. For example, it has been estimated that it would require 127
RCTs involving 63,500 patients over 286 years to produce the evidence
necessary to inform clinical decisions about Alzheimer’s disease (Saver and
Kalafut, 2001).

From Self-Knowledge to Scientific Knowledge

Recently, mHealth researchers have begun designing technology to
support a notion of self-experimentation, which has a long history in medi-
cine and psychology whereby doctors traditionally volunteered for ethical
reasons as the first subject in an experiment with unknown risks (Altman,
1998). Today in the mHealth context, this practice is being explored as a
way, for instance, to assist an individual with irritable bowel syndrome
identify foods that trigger symptoms or to help a person determine whether
exercising in the morning results in more energy later in the day (Karkar
et al., 2016). This work is motivated by the idea that people want to use
mHealth technologies to answer specific questions like these about their
health, but current tools fail to effectively support such diagnostic self-
tracking (Karkar et al., 2015). For example, many tools output graphs of
raw data that users find difficult to interpret or act on (Epstein et al., 2014),
and tools generally do not support personal experiments that have sufficient
methodological rigor (Choe et al., 2014).

Self-experimentation technologies help a user self-administer a con-
trolled study; the tool creates a schedule, encourages adherence to condi-
tions, and automatically runs statistical tests from which a user can draw
causal conclusions. The experiment follows a single-subject design (also
known as an n-of-1 study), which is sensitive to individual differences and
where a person serves as his or her own control (Lillie et al., 2011). These
n-of-1-style mHealth efforts coincide with interest from the medical com-
munity to adopt models of precision medicine that focus on individual,
rather than average, responses to particular treatments. Such an approach
can be advantageous compared to methodologies involving larger samples
(e.g., RCTs), which can lead to therapeutic solutions that are beneficial to
some patients but minimally effective or even detrimental for others (Gabler
et al., 2011). For example, some routinely used medications benefit as few
as 1in 50 individuals; other drugs have been found to be harmful for entire
ethnic groups—an outcome not often identified in clinical trials, since they
are typically biased toward white Western participants (Schork, 2015).
Similarly, clinical trials that skew toward younger populations do not neces-
sarily reveal adverse drug reactions in older adults (Petrovic et al., 2012).

Altogether, there is a massive opportunity to push forward the develop-
ment of mHealth infrastructures to generate population-level knowledge
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from personal-level data. Doing so will require addressing a variety of
open questions, such as how to create tools that adequately scaffold older
individuals in designing and running their own n-of-1 studies to rigorously
test hypotheses about themselves, how to determine appropriate statistical
approaches for causal inferences in these cases, and ultimately how to syn-
thesize individual findings into generalizable knowledge.

CONCLUSION

Realizing the Potential of mHealth for Adaptive Aging

mHealth technologies have the potential to play a positive, perhaps
transformative, role in supporting the health and well-being of our aging
population. To fully realize this potential, however, some barriers must be
overcome and facilitating steps taken, including to both address general
challenges as well as develop age-specific design solutions.

Barriers and Facilitators to mHealth Use

In general, the need for reliable network coverage can be a challenge,
particularly in rural or developing areas (Salemink et al., 2017), which has
implications for data fidelity and care delivery. Developing solutions that
do not require continuous real-time cloud connections or sending large
amounts of data and that can continue to function offline would help in
low-internet conditions. For example, progressive web apps could be a
desirable strategy.

Other previously identified barriers to entry for older adults include the
cost of and lack of familiarity with mHealth tools (Bujnowska-Fedak and
Pirogowicz, 2014; Lee and Coughlin, 2015; Mercer et al., 2016; Parker et
al., 2013; Peek et al., 2014). Android pricing is more affordable compared
to i0S devices, so choosing to build an Android app or host functionality
on a website that can be accessed on any platform could help. For older
patients with low digital literacy, it is necessary to devise effective strate-
gies for training, which studies show boosts self-efficacy and lowers anxiety
regarding the use of health technology (Wild et al., 2012). Such onboard-
ing might take place in inpatient settings, outpatient clinics, or as part
of community-based programs; or understandable tutorials could also be
built into the mHealth application so that the user would have the option
to complete it at home either alone or with family. Built-in support could
then continue over time, gradually introducing more advanced features or
to assist with device maintenance.

Such training could help build skills, but developing more usable, age-
tailored interactive functionality could also substantially boost adoption
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(Parker et al., 2013), especially for cases where lower engagement with
digital health technologies can be attributed at least in part to functional
limitations (e.g., age-related declines in psychomotor skills, vision, or hear-
ing). Interface and interaction design processes can accommodate such
constraints, both to improve existing and to inform novel devices. The next
subsection offers specific strategies.

Design Constraints and Goals for Adaptive Aging Tools

Unfortunately, research indicates most self-tracking technology is not
designed to support older adults’ needs, including limitations in cognition,
motivation, perception, and physical ability (Doyle et al., 2014; Wildenbos
et al., 2018). To improve accessibility, interfaces could include large touch-
target regions, readable fonts and font sizes, high-contrast screens, simple
interactions, low manipulability, and enhanced volume control. For ex-
ample, aiming to support pain reporting for older adults, the Meter mobile
app (Adams et al., 2017) implements similar strategies (e.g., oversized
fonts and graphics as well as large touch regions that accommodate low
accuracy), while the Keppi device (Adams et al., 2018) moves away from
the screen entirely by providing a tangible user interface that the user can
hold, press, and squeeze to report pain levels in a more natural and intuitive
manner. To further relieve dependence on visual and motor-based interac-
tions, the design of voice-based interfaces could be explored for seniors,
who now account for over one-third of all voice assistant users (Olmstead,
2017). While recent studies do indicate voice assistants are useful for older
adults (Pradhan et al., 2019), trade-offs related to hearing loss would be
important to weigh.

Beyond usability issues that relate to physical functioning, it is also im-
perative to consider challenges of information overload and devise designs
for delivering content in a way that is also cognitively legible. One promis-
ing strategy is moving from heavily quantitative or text-based reporting—
which prior research establishes is often overwhelming, demotivating,
and hard to interpret (Cohen and Sherman, 2014) including for older
adults (King et al., 2016)—and toward more qualitative representations
of personal data and health feedback. For example, work on designing
for populations with compromised concentration or other perception dif-
ficulties has developed novel informatics approaches that encode personal
data (e.g., activity levels, hours slept, social interactions) as visual features
(e.g., wave height, water color, or amount of sediment in an ocean encod-
ing scheme) in ways that resonate with the lived experiences the informa-
tion represents (Snyder et al., 2019). There is substantial opportunity to
similarly explore other media formats (light, audio, haptic) for delivering
intuitive feedback.
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Ethical, Privacy, and Safety Considerations

A variety of ethical concerns are necessary to take into account. Fore-
most, responsible management of collected data is critical given the highly
personal nature of behavioral, emotional, and other health-relevant infor-
mation, which also may be sensitive, stigmatic, and exploitable, especially
for a potentially vulnerable group, such as older adults. Older adults have
indeed raised general privacy concerns in previous research on mHealth
interventions (Chung et al., 2014; Consolvo et al., 2004; Gao 2015; Reeder
et al., 2016; Steele et al., 2009; Young et al., 2014). Going forward, there is
a need to directly investigate questions related to older adults’ understand-
ing and comfort levels with the collection of various types of data.

Specific strategies could include designing mechanisms for users to
better communicate privacy preferences to mHealth tools, turn on and off
data collection (Caine et al., 2010), and receive information about the im-
plications of sharing one’s data. Usable controls to access, view, and delete
captured data could enhance security, as could making two-factor authenti-
cation more inclusive for older adults (Das et al., 2019). Privacy-preserving
sensing methods can also be developed, such as processing locally and
extracting features insufficient to reconstruct raw data (Rabbi et al., 2011).

When mHealth tools are treated as a platform for research, this
will require policies for restricting which analyses and queries different
researchers can perform on the data through access controls, anonymiza-
tion, and differential privacy. Crafting such a set of data protections will
require human-centric security design and also open up additional research
opportunities to explore how cognitive models of security and data risk
affect how careful scientists are with data.

Regulations and lawmaking are also necessary to consider, such as
implementing protections to guard against insurance companies setting
rates based on a person’s historical mHealth data or predicted future health.
Procedures for formal vetting of mHealth technologies (e.g., FDA approval)
are also imperative, given these sorts of potential risks to personal welfare.

Future Directions for mHealth Solutions

In addition to pursuing novel design strategies and data policies that
are more inclusive and protective of the needs and safety of older adults,
other mHealth opportunities also abound. For example, prior mHealth
studies have typically involved small and potentially nonrepresentative
samples over relatively short periods of time. More rigorous examinations
are necessary to establish the efficacy of mHealth approaches in adaptive
aging contexts. Further, existing mHealth systems are often one-off appli-
cations rather than extensible platforms, and implementation is needed of
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more common-format interoperable systems, including to enable these sorts
of robust at-scale evaluations. More generally, mHealth’s rapid emergence
and innovation pace motivate ongoing reexaminations and reflections on
the field, to continue refining such recommendations.

In addition, despite the collaborative nature of managing the aging
process, mHealth systems have largely had an exclusive focus on the indi-
vidual, which motivates the development of tools that are aware of and can
support the social ecologies in which personal health management practices
take place (Murnane et al., 2018). Relatedly, while personal lifestyle choices
are key to improving health outcomes, interventions that rest predomi-
nantly on individual-level responsibility will be insufficient for achieving
large-scale, long-term solutions to many public health issues we face today.
In addition to user-driven, bottom-up approaches, more population-wide,
top-down changes are necessary too (e.g., to improve access to healthy food
choices and well-being-promoting urban infrastructure). mHealth pipelines
can be instrumental in gathering the sort of evidence necessary to inform
such institutional-level changes. Similarly, mHealth strategies for large-scale
measurement can help surface systematic health inequities, for example,
by using accelerometry data from smartphones to reveal physical activity
disparities in different cities around the world (Althoff et al., 2017).

Further, research indicates that older individuals who are from minority
ethnic groups have lower health and digital literacy, or are marginalized from
accessing traditional forms of health care may similarly face barriers to using
personal health care technologies and have different needs and expectations
for such tools (White et al., 2015). Novel strategies are necessary to bridge
this gap, such as more accessible education and training, inclusive transitional
care initiatives, such as ConnectHome (Leeman and Toles, 2019), and em-
powering community organizations with preventive mHealth tools. Another
emerging inequity relates to algorithmic biases—for example, research has
demonstrated that user models often encode significant age bias (Diaz et al.,
2018), which will likely require new tactics to identify and address.

Finally, framing technology as an intervention to treat age-related
changes can portray aging in a negative light and neglect the positive as-
pects of growing older (Durick et al., 2013; Ferri et al., 2017; Nassir et
al., 20135; Vines et al., 2015). Going forward, we hope to see the design
of mHealth technology challenge these stereotypes and support a framing of
flourishing in later life.
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Collection in Older Adults
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INTRODUCTION AND OVERVIEW

Frequent social connectivity with a variety of social partners is asso-
ciated with better psychological well-being and physical health, as well
as increased longevity (Umberson and Montez, 2010). We can think of
social connectivity along a spectrum from fully socially engaged to socially
isolated. Empirical evidence suggests a dose-response association between
degree of social connection and positive health outcomes (Tanskanen and
Anttila, 2016); that is, the more social connection, the greater the impact
on health and well-being.

Globally, there is increasing concern about trends in social connectivity,
loneliness, and social isolation (Holt-Lunstad et al., 2017; Klinenberg,
2016). Indeed, Great Britain established a national commission on lone-
liness to address this concern (Klinenberg, 2016). Prevalence of social
isolation in the US is difficult to estimate, but demographic trends portend
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increasing social disconnectedness in the future due to rising rates of child-
lessness, increasing numbers of never married and previously married indi-
viduals, smaller households, and falling community involvement in formal
groups (Holt-Lunstad et al., 2017). Given population aging, lack of social
connectivity is likely to become an increasing population concern.

Social networks tend to diminish in size as people age—in part, due
to retirement and deaths of friends and family, as well as increased physi-
cal frailty and reduced mobility (Klinenberg, 2016). The Pew Research
Center (2009) reports that social networks have declined by about a third
in size over the past few decades. Moreover, among older people in the
United States, men may be more at risk of social isolation than women
(Klinenberg, 2016), and Black Americans may be more at risk than their
non-Black counterparts (Umberson et al., 2017).

A number of public health and research initiatives address the issue
of social dis/connection in older populations. This chapter addresses how
different technologies may promote social connection and decrease social
isolation in late life. We consider two related issues. First, we marshal avail-
able evidence to consider whether and how technologies can be used to
promote social connection and well-being in older populations. Second, we
consider how mobile technologies can be used to study social connectivity
and health linkages in older adults. Social connections are fundamental to
overall health and well-being throughout life, and mobile technologies may
provide critical tools for generating and supporting those connections for
older populations.

INFORMATION AND COMMUNICATION TECHNOLOGIES
IN LATE LIFE

The term “information and communication technologies” (ICTs) has
been used to encompass the broad range of these technologies, which
include smartphones, specialized apps, web-based sites with information
about health and other topics, social media, videoconferences, voice acti-
vated virtual assistants, and a variety of other applications (see Table 4-1
for a full listing; Mitzner et al., 2019). Recent national surveys conducted
by the Pew Research Center reported that nearly three quarters of adults
over aged 65 used the internet (73%; Anderson et al., 2019), and the
majority of adults over age 65 have cell phones (91%).

Older adults lag behind younger age groups in use of many technolo-
gies. For example, most young adults use smartphones (90%) and social
media (86%). Yet only 40 percent of older adults use smartphones, with
use declining with age (e.g., 59% of 65 to 69-year-olds compared to 17%
of adults over age 80), and only a third of older adults use social media
(34%; Anderson and Perrin, 2017; Anderson et al., 2019). Further, Cotten
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TABLE 4-1 Types of ICTs and Definitions

Type of Definition Software &
ICT Devices
Health Often wearable technology that has the Smart watches

ability to inform doctors and other health
care provides of a patient’s well-being.
Information that can be communicated
includes heart rate, pulse, blood pressure,
sleep, step count, etc.

Smart clothing

Mobile phone
health apps
Business A category of ICT that is concerned with Word processors
the presentation, preservation, and
manipulation of data in a workplace or
classroom.
Spreadsheets
Presentation
software
Communication
meetings
Social A type of ICT that facilitates information Social media

exchange and communication between two
or more individuals

Video messaging

Text messaging

Dating

Video sharing

Digital assistants

Transactions

Examples

Apple Watch, Whoop Fitness Tracker,
Samsung Watch, FitBit

Measures: heart rate, accelerometer, sleep
analysis, calories burned,

Levi’s Commuter x Jacquard, Sensoria
Fitness Socks, Nadi X

Measures: heart rate, distance traveled,
altitude, posture adjustments

Apple Health app, MyFitnessPal, Strava

Measures: step count, distance, heart rate,
calories burned

Word, Google Docs, Pages

Excel, Google Sheets

Powerpoint, Prezi, Keynote

Webex, Zoom, GoToMeeting

Instagram, Facebook, Twitter, Snapchat,
Pinterest

Skype, FaceTime

Mobile phone apps: Messenger,
GroupMe, WhatsApp, iMessages

Bumble, Tinder, Match.com

YouTube, Tik Tok

Alexa, Siri, Google Home

Venmo, PayPal, Cash App, mobile
banking apps
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(2017) points out that Pew Research Center data likely overestimate tech-
nology use in old age due to exclusion of older adults who are unlikely to
use technologies (e.g., those in skilled nursing care or suffering dementias)
and who are unable to respond to smartphone or web-based surveys.

Among adults over the age of 65 who use ICTs, facilitation of social
connection and communication with friends and family are among the most
prevalent reasons (Cotten et al., 2012; Sims et al., 2017). Several types of
ICTs may be especially useful in fostering social connection, but older adults
may use these technologies selectively. For example, older adults may be more
comfortable placing calls on mobile phones, due to familiarity with phones
in general. They may be less likely to use smartphones that allow texting or
apps such as YouTube and Twitter where individuals share information.

Research also suggests that older adults are willing to embrace voice-
activated intelligent assistants (e.g., Alexa; Google assistant; Siri), but it is
not clear that these assistants improve feelings of social connection (Koon
et al., 2019). One small study involved semi-structured interviews with 12
older adults to evaluate their experience with Amazon Echo. Older adults
were positive overall about the voice-activated assistant for music, weather,
and information but reported frustrations with social aspects, such as the
device’s inability to understand their accent or giving the response “I don’t
know what you mean.” Even adults who mastered tasks that facilitated
communication with friends or family questioned whether it was more
useful than the phone (Koons et al., 2019). Thus, the devices may assist
with practical tasks, but it is not clear whether these technologies assist
in social connection or that they can substitute for human interactions in
some situations.

Facilitating Factors and Barriers to Use of ICTs for Social Connection

Many older adults use technologies for social communication, but a
large proportion do not (Anderson and Perin, 2017; Anderson et al., 2019;
Hargattai, 2018). These disparities reflect access to resources. Nearly all
young adults of all socioeconomic backgrounds have access to an array of
technologies and regularly use ICTs to connect with other people, but for
older adults, a lack of economic, educational, and social resources may
place constraints on access to, and effective use of technologies for social
connection.

Demographic factors associated with technology use in old age include
advantaged statuses, such as younger age, higher education and income,
better health, being non-Hispanic White and speaking English (Berkowsky,
Sharit, and Czaja, 2018), and residing in more urban areas, as opposed to
rural areas (Findlay and Nies, 2017). For example, a study of 1,700 older
adults in the Chicago area revealed that income determined ownership
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and use of a wide array of ICTs (e.g., smartphone, e-reader, tablet; Thm and
Hsieh, 2016). Similarly, a convenience sample of 350 older adults in rural
Idaho (where ICT use is low), revealed that older adults who use social
networking sites have socioeconomic advantages that contribute to internet
use (Findlay and Nies, 2017).

Data regarding factors that determine ICT use in later life are avail-
able from two large national longitudinal studies of older populations. The
National Health and Aging Trends Study (NHATS) started in 2011 and
involved nearly 6,500 adults aged 65 and older representative of the US
older population. Participants answered questions about information and
communication technology, including having a cell phone or a computer and
whether the individual has texted, emailed, used the internet, and gone online
for health information, shopping, etc. in the prior month (Elliot et al., 2013).
The Health and Retirement Study (HRS) is a large longitudinal national sur-
vey of approximately 20,000 adults over the age of 50 with follow-ups every
two years starting in 1992. The HRS survey included a single item about use
of the internet (presumably via a computer) starting in 2002. In 2012, the
HRS administered a module asking about use of ten types of ICTs, such as
video chatting, social networks, devices to monitor health, and e-readers or
tablets to a subset of approximately 1,800 participants (Chopik et al., 2017).

These studies documented cross-sectional associations between cog-
nitive functioning and use of ICTs in late life. Not surprisingly, better
cognitive functioning is linked to adoption of a great number of ICTs (in
the HRS; Chopik et al., 2017) and to use of ICTs for texting or email
(in the NHATS; Elliot et al., 2013). Furthermore, the design of ICTs may
present challenges in the face of psychomotor and cognitive changes in late
life; such designs may limit use of technologies among some older popula-
tions. For example, smartphone apps or other technologies that have the
potential to facilitate communication in late life may be too complicated for
many older adults or may require fine motor skills that are too demanding
(Charness and Boot, 2016). Technical updates and new operating systems
can also alter the format of technologies after older adults have mastered
them, and may present barriers to continued utilization.

Technology use and purpose of use also vary by gender. Data from the
NHATS revealed that men are more likely to use technologies in general
and are more likely to use technologies for informational purposes in par-
ticular, whereas older women who use technologies do so to foster social
engagement (Kim et al., 2017). Consistent with this gender difference, data
from the HRS documents that women are more likely than men to use
social networking sites (SNSs) like Facebook (Yu et al., 2016).

In sum, there is a digital divide in older adults’ adoption of technolo-
gies based on structural factors (Fang et al., 2019). Older adults who have
more resources and better education and cognitive function are more likely
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to use technologies that may enhance their social connectedness. Gender
differences complicate these patterns, however, with men more likely to use
ICTs in general, but women more likely to use technologies specific to com-
munication (e.g., text messaging, SNSs). Other individual factors (e.g., race/
ethnicity) condition ICT use as well. As such, it is not clear which factors
influence use of these technologies specifically for communication and social
engagement, although extant data hint that individuals who are advantaged
with a larger social network are also the ones who are most likely to use
ICT to connect to social partners.

Use of Technologies for Communication and Social Connection

A fundamental question in the study of technologies in late life is the
extent to which older adults who do use these new technologies (e.g., smart-
phone, video conference, social media) do so for communications and social
connection (for a discussion, see Hulur and McDonald, 2020). Researchers
suggest that older adults who use technologies for social connection do so
for two motivations: (a) the complementary use of technologies for com-
munication to supplement and reinforce existing social ties, and (b) the
compensatory use of technologies for communication to make up for lack
of social ties and disadvantages (Sims et al., 2017).

Evidence suggests complementary use of these media. Older adults
are more likely to use these technologies when their social partners assist
them and encourage them to do so (Francis et al., 2018). Similarly, older
adults who wish to use technologies such as SNSs are often motivated by
a desire to communicate with family members and friends who also use
these network sites (Charness and Boot, 2016). Social partners may play a
key role in motivating older adults to use technologies, helping them set up
and learn to use these technologies, and problem-solving difficulties (i.e.,
“glitches”) that arise. Children, grandchildren, and other younger people
may assist in using and updating technologies in ways that strengthen older
adults’ sense of connection to these helpers.

A study relying on focus groups in the Midwest found that older adults’
requests for assistance with ICT generated stronger bonds to family mem-
bers and generated interactions with experts in technology (e.g., customer
service) outside the older adults’ family (Francis et al., 2018). A clinical
trial introduced older adults to the internet, social media, and emails in
a continuous care retirement community (i.e., a single facility with older
adults residing in independent living units, assisted living units, and skilled
nursing facilities; Cotten et al., 2017). The study introduced peer teaching
in promoting ICT use; these peer connections were successful for technol-
ogy adoption because older learners enjoyed learning from an age mate,
and individuals of similar ages shared experiences.
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Data also support the compensation model. Yu and colleagues (2016)
suggested that individuals who are widowed or are homemakers may be
compensating for lack of social networks in their greater use of SNSs. A
study conducted with a subset of the HRS sample found that older adults
who live alone benefited more from use of the internet than did older adults
who resided with others (Cotten et al., 2014). Likewise, a growing number
of older adults use dating websites to find new romantic partners (Davis
and Fingerman, 2016; Griffin and Fingerman, 2018).

Many studies have focused on use of SNSs such as Facebook in old age.
In addition to constraints on use of technologies in general, barriers to use
of SNSs include older adults’ concerns about privacy, fear of identity theft,
and perceived lack of security that may be specific to social media (Bixter et
al., 2019; Hutto et al., 2015). Nevertheless, many older adults do use SNSs.
According to a Pew Research Center survey, 46 percent of older adults
reported use of Facebook in 2019 (Perrin and Anderson, 2019). It is not
clear that older adults use Facebook in the same manner as younger adults,
however. A cross-sectional nationally representative study of 1,000 adults
aged 18 to 93 revealed age differences in Facebook networks. Compared
with younger adults, older adults reported smaller Facebook friend net-
works, but a greater proportion of actual friends (i.e., also friends outside
of Facebook; Chang et al., 2015). That is, older adults who use Facebook
do so to engage with people they already know. In sum, ICTs, including
social media, have the potential to help retain and reinforce existing sup-
portive ties and also have the potential to generate new social connections.

SOCIAL USE OF TECHNOLOGIES AND WELL-BEING IN LATE LIFE

Researchers are particularly interested in whether ICTs can be used for
social connection to improve social engagement, social isolation, loneliness,
depressive symptoms and depression, life satisfaction, and physical well-
being. To date, many studies have documented benefits of different forms
of ICT use on these outcomes (Cotten et al., 2012, 2014; Heo et al., 2015).
In documenting these associations, however, the majority of research has
relied on cross-sectional data, with only a few studies using longitudinal
data. Moreover, one study of 92 adults over the age of 50 found that intro-
ducing tablets increased (rather than decreased) loneliness (Pauly et al.,
2019), perhaps due to social comparisons that arise via SNSs.

On the whole, however, adults seem to benefit from use of ICTs.
Reciprocally, older adults with better well-being may be more motivated
to use technologies. Data from the HRS (i.e., 2006, 2008 or 2012 waves
of data) revealed that internet use was associated with fewer symptoms of
depression cross-sectionally and longitudinally (Cotten et al., 2012, 2014).
Chopik (2016) examined cross-sectional data from the HRS and linked use
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of social technologies (e.g., email, SNS, online video/phone calls, online
chatting/instant messaging, smartphone usage) to a variety of positive out-
comes (e.g., reduced loneliness, better life satisfaction, fewer chronic condi-
tions, better health). These associations are also evident among adults in
very late life. Sims et al. (2017) recruited a nationally representative sample
of 445 adults over age 80. Older adults reported their use of 16 technolo-
gies (e.g., online banking, video games, digital books, fitness trackers, email,
video calls). Using more devices or apps was positively associated with feel-
ing connected to loved ones and life satisfaction and negatively associated
with loneliness and functional limitations. Furthermore, use of ICTs for
social connection was associated with less loneliness and better psychologi-
cal well-being, above and beyond the number of devices.

Longitudinal studies have also confirmed the direction of these asso-
ciations over time. Cotten and colleagues examined ratings of internet use
from 2002 to 2008 in the HRS. Controlling for prior depression and prior
internet use, they found that internet use reduced the probability of a future
depressive state by about 33%. Likewise, Szabo and colleagues (2019)
studied over 1,000 New Zealand adults aged 60 to 77 and assessed three
purposes for online engagement: social (e.g., engaging with friends/family),
instrumental (e.g., banking), and informational (e.g., health information).
Over four years, from 2013 to 2016, use of technologies for social purposes
was associated with decreased loneliness and increased social engagement,
which in turn were associated with better psychological well-being.

The literature has also focused more specifically on benefits of using
SNSs. The Georgia Tech Home Lab study provided detailed information
regarding Facebook use. This cross-sectional convenience study included
142 volunteer participants over the age of 50 who completed a brief survey
of social media use (e.g., Skype and Facebook) and traditional communica-
tion media (e.g., phone, face-to-face, letter). Bell et al. (2013) analyzed these
data and found that older adults who used Facebook were more satisfied
with their social lives than older adults who did not use Facebook, but they
were not less lonely.

Individuals use SNSs in several ways, but three types of behaviors stand
out: (a) social communication directed at specific individuals, (b) broadcast
communications to the broader network, and (c) passive consumption of
social partners’ posts. Hutto and colleagues (2015) also drew on the conve-
nience sample in the Georgia Tech Home Lab to show that older adults who
engaged in directed communications via SNSs (as opposed to broadcast and
passive communications) were less lonely and more satisfied with their lives.

National data may tell a different story about Facebook use and well-
being in adulthood. Shakya and Christakis (2017) conducted a longitudinal
study of US households using three waves of Gallup’s web-based polling data
(2013 to 2015). The survey asked about the people that participants could
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confide in or spend time with (referred to as “real world” social networks).
Participants also provided the researchers access to their Facebook accounts.
Notably, the study by definition excluded adults who did not use Facebook
(i.e., over half of older adults). The researchers examined the number of
Facebook friends, the number of times participants “liked” someone else’s
content, clicked on links posted by friends, and updated their own status
on Facebook. Cross-sectional and prospective analyses revealed that real-
world social connections were associated with better self-rated psychological
health, life satisfaction, and physical health. Facebook behaviors (e.g., lik-
ing another’s content and clicking links posted by friends) were associated
with poorer well-being. Furthermore, the negative effects of Facebook were
comparable or greater than the positive effects of having real-world social
connections. This study did not provide analyses by age, and future research
is necessary to disentangle these patterns in older populations.

In sum, ICTs may not substitute for face-to-face social contact and
connection but may provide older people with opportunities to connect to
the social world virtually. Additional research is necessary to understand
how phone use, texting, video conferencing, and other one-to-one social
connections via ICT might be beneficial in the absence of other face-to-face
connection.

INTERVENTIONS TO IMPROVE SOCIAL CONNECTION
VIA ICT USE

Given the number of devices available to facilitate communication
easily and inexpensively, interventions to mitigate social isolation and im-
prove social connectedness in late life are tenable. For example, the World
Health Organization recently launched a digital application (or app) to
provide healthcare and social workers resources necessary to reduce social
isolation in late life (Chaib, 2019).

Randomized controlled studies of interventions have begun to examine
ICT use to alleviate social distress or promote social connection. A syn-
thesis of this literature is limited because studies use different definitions
of social involvement, vary in ICTs examined, and may not include long-
term follow-up. Likewise, some intervention studies intended to enhance
social connection via ICTs have relied on small samples, qualitative data,
or demonstration projects. Furthermore, because these interventions typi-
cally target older adults who are not familiar with the technologies, the
intervention must include training elements. Training may introduce social
contacts that are difficult to account for in assessments of the intervention
(Shillair et al., 20135).

Intervention studies with control groups present convincing findings
regarding the benefits of ICT use. Shillair and colleagues (2015) conducted
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a randomized controlled trial (RCT) introducing laptop computers and
internet access to improve loneliness and social isolation. The study drew
on a convenience sample residing in assisted living and independent living
communities. The intervention occurred over 8 weeks and involved training
on laptop computers. The study also included a placebo group (received
the same number of sessions with the trainers, but no ICT use) and a true
control (no ICT/no placebo training). The effects of the ICTs on life satis-
faction over time (3 months, 6 months, 12 months) depended on attitudes
toward ICT use (Tsai et al., 2019). Older adults who grew more confident
about using ICTs to communicate also felt more socially supported, and
their overall life satisfaction grew higher over time (Shillair et al., 2015). As
such, introduction of ICTs is not a panacea, but rather depends on training
and time for the person to become comfortable with these technologies.

Another intervention, the Personal Reminder Information Social Man-
agement System (PRISM) study recruited 300 volunteers over the age of 65
residing independently in the community. The intervention provided partici-
pants with a mini desktop PC with free internet access, a printer, and free
access to the internet, including a calendar, photo feature, emails, and online
help. The email feature included a “buddy tab” intended to foster social
connections between study participants. A control group received similar
information in a binder with opportunities to form connections to other
participants by sharing their phone number and interests with other par-
ticipants in their group. At 6 months postrandomization, participants in
the PRISM condition showed greater improvements in ratings of loneliness
and social support than the binder group, but these differences disappeared
at 12 months postrandomization when both groups showed improvements
(Czaja et al., 2018). Although these intervention studies point in the direction
of benefits from technology for social involvement, some smaller studies have
shown opposite effects of using social functions on portable ICTs, perhaps
due to feelings of exclusion that increase loneliness (Pauly et al., 2019).

Finally, older adults’ social lives typically involve enclaves of social
partners who have long histories of interactions, who are educationally
similar, and who share cultural backgrounds (McPherson et al., 2001).
As such, older adults who do not use technologies are likely to have older
friends and relatives who do not use technologies for communication. Inter-
ventions that target one older adult may be ineffective in the absence of
including the broader social circle.

USING MOBILE TECHNOLOGIES IN RESEARCH
ON SOCIAL CONNECTIVITY

Although the literature regarding older adults’ use of mobile technology
has focused broadly on ICTs, researchers have specifically used mobile tech-
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nologies to examine older adults’ social lives. Using mobile technologies,
scholars have generated self-reports of activities and mood throughout the
day, observations of conversations, location, and activity level, and links
between daily social connections and well-being outcomes.

Self-Reported Social Connectivity via Mobile Devices

Studies of older adults’ social lives have used daily diary methods to
assess self-reported social interactions throughout the day (see Table 4-2 for
types of measurement and definitions). Many of those studies (e.g., Birditt,
2013) have relied on telephone interviews at the end of the day, without
placing demands on older adults to utilize technologies.

Other studies have used ecological momentary assessments (EMAs; sur-
veys that participants complete at intervals throughout the day as they go
about their daily life) relying on smartphones preprogrammed specifically
for that study, and sometimes including less-educated older adults by pro-
viding training and instruction, and technical support follow-ups (Birditt
et al., 2018; Fingerman et al., 2020). These methods, by which individuals
report on their social connections multiple times a day, shed light on social
interactions and how such interactions contribute to health and well-being.
These methods can provide insights into the temporal sequencing of events
and help identify potential mechanisms linking social connectivity and
health or well-being. For example, Birditt et al. (2018) assessed older adults
aged 65 and older every three hours for 5 to 6 days, and found that older
adults rarely reported social isolation (defined as no contact via face-to-
face, telephone, or electronically for three consecutive hours).

TABLE 4-2 Mobile Assessments and Definitions

Type

Definition

Self-reported

Daily diary

Surveys completed once a day

Ecological momentary assessment

Surveys completed multiple times a day

Interval-based assessments

Surveys arrive at set times

Event based Surveys completed when particular events occur
Random Surveys arrive at random times
Observational
Mobile phone logs Logs of text messages and phone calls
GPS Location information

Electronically Activated Recorder (EAR )

App that records snippets of sound at random intervals

Blue tooth

Used to assess size of social groups and connection

Measures of health

Ambulatory blood pressure and heart rate

Assesses blood pressure and heart rate randomly or at set
intervals

Accelerometers

Measures acceleration. When sleeping is referred to as
actigraphy.
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Researchers have also used a variety of ambulatory devices to measure
associations between social interactions and health indicators, including
physical activity, sleep, heart rate, and blood pressure, throughout the day.
These studies provide insights into the mechanisms linking social connec-
tions and health. Our recent research identified associations between social
integration, daily activities, and physical activity in late life using Ecological
Momentary Assessments on handheld Android devices—supplemented by
objective indicators of physical activity measured with Actical accelerom-
eters (Fingerman et al., 2019). We found that connecting with a wider
variety of social partners was associated with greater physical activity and
better mood. Social connections and relationship quality are also associ-
ated with sleep duration and quality as measured with actigraphs. Cross-
sectional research using the National Social Life Health and Aging (NSHAP)
data (individuals aged 57 to 85) have focused on sleep and marital quality
using actigraph/accelerometer (Chen et al., 2014). Likewise, researchers
have examined daily social interactions and ambulatory blood pressure in
younger adults but have often not examined older adults (Cornelius et al.,
2019). Overall, these studies show that mobile technology can be used to
assess many facets of social connection and health and allow examination
of temporal links between social ties and health outcomes as they unfold.

Observational Studies of Social Connectivity

Observational studies use smartphone technology to obtain informa-
tion regarding types of communication, geographic location, and recordings
of the natural environment. Mobile devices can be used to assess proxim-
ity to social partners using Bluetooth data to determine the strength of the
connection between individuals (Boonstra et al., 2015) or the size of social
groups (Chen et al., 2014). Researchers can also use the GPS data from
mobile devices to assess the geographical location of respondents, includ-
ing distance from home. A study of older adults found that time spent out
of the house (measured with GPS) was associated with exercise and social
activities (York and Cagney, 2017).

Another mobile device, the Electronically Activated Recorder (EAR)
records participants’ utterances as they occur in the natural environment
(Mehl, 2017). Studies have shown that the EAR provides unique predictive
information beyond self-report. The EAR device can also be used to track
human behaviors that are less conscious, including sighing, swearing, and
laughing, as well as emotional tone, all of which can provide important
information about mental and physical health. The EAR device may also
provide information about the effects of early-stage cognitive impairments
and the effects of hearing loss on conversation and social engagement, but
has not been used specifically in these contexts.
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CONCLUSION

Social networks become smaller as people age, and older people are
more likely than their younger counterparts to report feeling lonely and
socially isolated (Kemperman et al., 2019). ICT use in older populations
offers great promise for fostering social connection. The use of mobile
technologies to gather data on the social connectivity of older people in
relation to their health and well-being can lay groundwork for effective
policies and practice strategies to enhance social connection. However, the
limitations of such strategies must also be considered by recognizing that
mobile technologies may not always be effective substitutes for in-person
social contact. Below, we briefly review several major themes in the current
research evidence on mobile technology use and social connectivity with
older populations and identify strategic directions for future research.

The first major theme concerns the need for additional research on
information and communication technologies and social connection among
older adults. Today’s older people grew up in an era devoid of such tech-
nologies, and thus opportunities, constraints, and rewards of information
and communication technologies are highly likely to differ for younger and
older age cohorts. Use of technology has largely saturated younger cohorts,
whereas there are sizable discrepancies in use of technologies in late life.
Older adults who are well off typically use new technologies, whereas those
who are less well off typically do not (Hargittai, 2018). These discrepancies
reflect education and resources; older adults who have greater access and
knowledge are more likely to adopt these technologies. Moreover, Black
and Hispanic Americans are less likely to have broadband connections
at home, which reduces the usefulness of ICTs (and the potential human
capital they are associated with) and may lead to disparities.

Other disparities reflect social resources. Individuals who are more
socially engaged and socially connected through family and friends are also
more likely to have social partners who provide them with technologies,
provide instruction in usage, and serve as targets for connection through
SNSs (e.g., Facebook). Further, women are more likely than men to use
technology for social networking (Kim et al., 2017).

Second, current research evidence on the use of and benefits from ICT
is limited because many studies rely on small samples and cross-sectional
designs. These approaches reflect the challenges of defining sampling in
older adults. It is highly likely that the use of mobile technologies for social
connection are affected by the mental, physical, and cognitive status of
people as they age, and disentangling these factors in research is complex.
Studies that have used national samples with longitudinal data suggest that
ICT use in late life is beneficial (e.g., Cotten, et al., 2014). Nevertheless,
much of this research is limited to two national datasets (NHATS, HRS),
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both of which have limited items addressing ICT use. Substantial invest-
ment is required to execute studies that draw on multiple items and multiple
methods to assess social connection and use of technologies over time.

Third, given the growing burden of dementia in aging societies, there
is a pressing need for research examining interventions to increase the use
of ICTs to foster social connectivity. Interventions and programs using such
technologies may be particularly important to assist people with cognitive
impairment and their caregivers. Nevertheless, early intervention studies on
how technologies can alleviate caregiver burden have had limited success,
and the costs of the technologies outweighed the benefits. Relatively low
cost technologies, such as GPS, may assist caregivers to locate persons with
dementia who tend to wander, though the ethics of using such devices has
also been questioned (Mahoney and Mahoney, 2010). Future intervention
research might focus on the feasibility, ethics, and dissemination of these
existing low-cost technologies.

In this chapter, we discussed several ways in which ICTs intersect
with the well-being of older populations: (a) older people’s use of ICTs with
regard to social connection, (b) factors that facilitate or set up barriers for
the use of such technologies, (¢) the impact of using these technologies
for social connection to improve well-being in late life, (d) interventions to
increase social connectivity via adoptions of ICTs, and (e) research applica-
tions using mobile technologies. ICTs offer many opportunities to enhance
feelings of social connection among older populations, and to promote their
well-being. ICTs may also confer benefits outside of promoting social con-
nection, such as health monitoring, banking, and other daily tasks. Future
research should consider the potential costs and benefits across ICTs used
by older people, with close attention to the purpose and consequences of
different types of ICTs. As future cohorts grow older, the use of ICTs for
social connection in late life may continue to grow.
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Using Machine Learning to Forecast
and Improve Clinical Outcomes and
Healthy Aging Using Sensor Data

Alvin Rajkomar’

INTRODUCTION

Our understanding of health and aging comes from snapshots of mea-
surements collected in healthcare settings, such as yearly blood testing for
glucose, or responses to antidepressants measured episodically every few
months by a clinician. Yet the vast majority of people’s daily experiences
unfold outside the eyes of the healthcare system, leaving habits, dietary
choices, sleep, environmental, and social exposures unmeasured, along
with important outcomes that are hard to collect with a questionnaire in
a physician’s office, such as daily perception of how they feel, functional
independence, and emotional state.

By analyzing real time locations and speeds of cars, apps can automati-
cally detect traffic and re-route you to your destination to arrive sooner.
It seems natural that if a system could collect lifestyle habits of millions
of people through ubiquitous sensors, such as those in cell phones, and
follow what happened to them—whether they developed diseases or dis-
ability—then it could direct people how to live better to reduce the risk of
diabetes or to inform how we can promote an aging parent to live safely
at home, effectively re-routing their life to a longer, independent life. At a
high level, we are all on the same journey of aging, and while young we
generally rebound back to our expected levels of functioning after illness,
accidents, or life-events, but as we age, we lose our ability to return to our
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prior function after increasingly small stressors and physiological insults
(Clegg et al., 2013). Finding the path that maintains health and robustness
of individuals and populations is therefore a universal need.

However, the optimism that large data sets and complex data analysis
can help us learn personalized insights to optimize our way of living to
promote personal betterment or graceful aging must be tempered with the
humility that this endeavor is exceedingly difficult.

The amount of data collected from individual participants in trials
already exceeds the ability of a human expert clinician to review, evaluate,
and interpret, and machine intelligence plays a pivotal role for analysis.
The question is how can researchers thoughtfully apply best practices in
machine learning (ML) and clinical research as they use data to forecast
progression of aging and clinical trajectories and identify ways to improve
patient outcomes.

This chapter will begin by reviewing the core aspects that constitute an
ML system: input data, desired outputs, and generation of training and test
data. Following this review, the chapter will discuss ways in which ML can
be applied to sensor data gathered in clinical trial settings as a means of
identifying potential outcomes, forecasting health trajectories, and develop-
ing interventions to improve health for older adults.

MACHINE LEARNING CONSIDERATIONS

Overview of Machine Learning

The details of ML were recently summarized (Rajkomar, Dean, and
Kohane, 2019). This chapter will focus on the most commonly used type
of ML, referred to as supervised ML. While supervised ML is featured here,
other types of ML have been used for proof-of-concepts (Fisher et al., 2019)
and show promising results.

Supervised ML differs from traditional computer programs, which are
written by software engineers who specify the step-by-step computations
of transforming input data (called features) to output data (called labels).
For example, to use the weight and height of a patient (features, or input
data) to calculate the body mass index (BMI; a label, or output), a computer
program can be written to perform the known calculation of BMI = weight/
height (Clegg et al., 2013). In supervised ML, rather than providing the for-
mula, the programmer simply gives these algorithms examples of patients
with known weights, heights, and BMIs, and specific algorithms designed to
learn from examples are used to build an ML model that predicts the BMIs
for combinations of height and weight that were never seen in the initial set
of examples provided. While ML would be a poor choice to determine BMI
calculations from the weight and height since the relationship is known

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/25878

Mobile Technology for Adaptive Aging: Proceedings of a Workshop

USING MACHINE LEARNING TO FORECAST AND IMPROVE CLINICAL OUTCOMES ~ 87

ahead of time, it can be useful when the association is hard or impossible
to specify by hand, such as using a digital picture of a person (features) to
classify his or her BMI (label).

In medicine, ML models have been used to automate analysis of medi-
cal images, such as using eye fundus images (features) to diagnose diabetic
retinopathy (labels; Gulshan et al., 2016) or using the sequence of data in a
medical record (features) to predict patient outcomes, such as whether they
are readmitted to the hospital (label; Rajkomar et al., 2018). Consented
collection of digital data from patients during their daily life from wearable
or ambient sensors can be used as input (features; Perez et al., 2019) for a
variety of prediction tasks, such as onset of cognitive decline or worsened
mobility (labels), which will be discussed in further detail below.

Input Data

Types of Sensors

The ubiquity of low-cost, miniature, and novel sensors allows for the
collection of data that were previously too expensive or inconvenient to
collect at scale. There is inconsistent terminology to categorize these sen-
sors; some authors use the term “wearable” to emphasize the form factor
and ease of collection, others use mobile health to highlight connection to
a sensor carried in a mobile phone. However, data can be collected with
sensors embedded in the environment (e.g., cameras or pressure sensors
under a mattress to detect movement) that are similar to data collected
with sensors worn on the body. This chapter considers the type of sensors
that would detect data from daily living under proper consent regardless of
whether they are wearable or ambient and refers to them as sensors despite
the imprecision of this name.

Table 5-1 lists common sensors that are currently available commer-
cially or in research devices that measure a host of signals, such as electri-
cal signals (i.e., for electrocardiograms), acceleration/orientation (e.g., for
movement), temperature, or audio (Heikenfeld et al., 2018; Mohr, Zhang,
and Schueller, 2017; Ray et al., 2019). There are also a wide class of
biosensors that use biological elements in the sensor itself (e.g., enzymes,
cell receptors) that can be measured from the eye, mouth, skin, and more,
although these are generally not commercially available and will not be
discussed at length in this manuscript (Kim et al., 2019).

For ML, a key point is that the sensor data produce a raw signal that
often undergoes further processing before outputting a human-understand-
able reading. For example, a photoplethysmographic sensor often outputs
many readings of the heart rate that are averaged together in a process that
produces a “final” reading periodically. The final reading is then fed into
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TABLE 5-1 Selected Types of Sensors that Collect Data Outside Healthcare Settings

Category of Measurement | Examples of Examples of Derived
Specific Sensors Measurements Measurements
Data measured from wearable sensors
Inertia Accelerometer, Linear and angular | Types of activity
gyroscope, motion (e.g., walking),
magnetometer step length, falls
Light transmittance Photoplethysmo- Oxygen saturation, | Measurements of
through skin graphic (PPG) heart rate, heart cardiovascular
rate variability health
Electrical activity Electrodes Electrocardiograms | Heart rhythms,
(EKG), sleep states,
electroencephalogr | emotional state
ams (EEG),
Galvanic skin
responses
Mechanical movements Piezoelectric Pulsations on skin
sensors from heart beats
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Chemical analytes on skin

Potentiometric and

Glucose, lactate,

amperometric sodium
sensors measurements in
sweat

Temperature Thermistor Body temperature | Elevated risk of

infection (Abbasi,
2017)

Location Global position Movement Location entropy
satellite to indicate
measurements depression

Measurements from ambient sources
Video Cameras Pixels Activity
classification in the
home, vital signs
(Prakash and
Tucker, 2018), gait
Audio Microphones Waveforms Respiratory status

from breath
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sounds, emotion

from voice
Interactions with Smartphones, Patterns of typing | Fine motor control
computing devices Tablets, Keyboards | and scrolling that tracks

development of
Alzheimer disease
(Kourtis et al.,
2019), digital
phenotypes for
psychiatric
diseases (Insel,

2017)

Smart devices Smart pill caps How often Medication
medication bottles | adherence

are opened

NOTE: These sensors can be used passively or actively, depending on the clinical application.

an ML model. The details of this preprocessing done prior to the output
of a visible sensor “reading” are idiosyncratic to a manufacturer, and these
idiosyncracies are on top of the known issue that sensor data from the
same type of device but different manufacturers are not equally accurate.
Variations in sensor quality and sensor-data processing make validation and
comparability of readings across all devices used in a study critical (Wang
et al., 2017).

Active versus Passive Data Collection

Sensors commonly collect data passively, meaning a person is not
actively engaging with the sensor as they go about their day (Sim, 2019).
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For example, simply carrying a smartphone is sufficient for accelerometers,
barometers, and GPS sensors to track activity and movement. Passive
sensing generates a sequence of measurements of variable duration and
therefore length, and ML models specific to dealing with sequences exist to
model this type of data.

Use of passive sensor data is likely more suitable for aging populations
who may not wish to actively engage with devices, have difficulty using
them, or are less comfortable performing active assessments themselves.

Sensors can also be intentionally engaged for active or functional assess-
ment, such as performing a 6-minute walk test by carrying a phone; in this
case, data collection would require the user to actively indicate the begin-
ning and end of the test (even though the phone is also passively tracking
movement as well). The active engagement might be triggered by a sensor
reading, as when a user’s wristwatch sensor detects an arrhythmia and so
prompts the user to report whether they are experiencing any symptoms
of atrial fibrillation. Because active data collection like time exertion and
electronic patient-reported outcomes is done under more controlled settings
or with specific prompts than passive data collection throughout the day,
the generated sensor data have less variation, and models can potentially be
built with fewer data.

Outputs of a Model

A supervised ML model is trained to associate a sequence of sensor
measurements with a specific output (i.e., label), and the output is inti-
mately tied to the clinical purpose of the model. This section describes attri-
butes of outputs from a machine learning and clinical research perspective.

Detection, Classification, and Prediction Machine Learning Outcomes

In traditional research, the output is called the primary outcome, and
it is typically assessed at the end of a prespecified follow-up period. As
shown in Figure 5-1, with sensor data, “output” can refer to several things.
It can designate a measurement of the sensor data (detection); a secondary
measurement made while sensor data are actively being collected (classifica-
tion); or an outcome that will occur in the future (prediction).

Consider a wearable sensor that produces an electrocardiogram. A
model could be used to detect if the recorded electrical pattern is consistent
with atrial fibrillation. If the user is prompted to indicate their emotional
state of anxiety at the time of an elevated heart rate, a model could use
the same sensor to classify emotional state. A model could also predict if
a patient, currently in sinus rhythm, will develop atrial fibrillation in the
future (Attia et al., 2019).
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Detection label
Input data (features): sequence of sensor data ‘(outcome measured with sensor dftﬁ itself)
== ) @
Classification label Prediction label

(outcome determined (outcome in future)
by non-sensor data)

FIGURE 5-1 Common label types for sensor data. Typically, a sequence of data points are
measured over time and machine learning models can associate this input with a variety of
labels. If the sensor itself measures the outcome, such as heart rate monitor detecting abnormal
rhythms to detect possible atrial fibrillation, then the label is referred to as a detection label.
Other studies may use a secondary source of data collection, such as a validated questionnaire
on depression severity, which creates labels that are referred to as classification labels. Labels
collected from subsequent activity from either the sensor or a secondary source are referred to
as prediction labels. The literature does not use these terms consistently, but they are helpful
to create a framework for the types of outputs of ML models.

While it is important that input data, whether passively or actively
collected, be collected over representative populations, it is critical that
labels, whether they are detections, classifications, or predictions, be of high
quality compared to a reference standard. Reference standards themselves
often require subjective clinical judgment, which may require multiple
expert raters to reduce the intra- and inter-rater variability (Liu et al.,
2019). Sensor data have the additional challenge of being extremely long,
and annotating every segment of data may be infeasible; additional tech-
niques may be necessary to coarsely tag parts of the sequence that require
precise labeling (Yeung et al., 2019).

Detection and classification have numerous uses for aging populations,
such as detecting abnormal vital signs or classifying activity (e.g., getting
out of a chair) as indicative of frailty. Trends of classification, such as
decreased activity or movement, can be used for direct clinical management
(e.g., identification of worsening heart failure) or used as an interpretable
feature and input of another ML model to predict admission to the hospital.

Prediction is critical to enable healthy aging because one of the most
problematic expressions of aging is frailty, which has not been shown to
be reversible (Clegg et al., 2013). Identifying patients who will become
frail before they actually do is the critical first step to delaying or averting
its onset. However, since frailty is a progressive clinical condition across
a variety of age- and disease-related changes, even detection of the initial
stages of frailty is a form of prediction, highlighting the related nature of
detection, classification, and prediction. However, as noted below, predict-
ing the future does not mean it is possible to change it.
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Clinically Applicable Outcomes

>

A commonly described label is “onset of a disease state,” so that pa-
tients and their clinicians can be alerted early of an impending condition
and take preventive action. For example, a continuous glucose monitor
might be used to predict onset of diabetes within 3 years. Related exten-
sions include detecting or predicting worsening of disease (e.g., automatic
monitoring of daily tremor activity in patients with parkinsonism or predic-
tion of manic episodes) and identifying patients who have specific subtypes
of a disease and so may have a different expected trajectory or respond to
different management.

For all outcomes, it is critical to distinguish hard versus surrogate end-
points. Hard, or clinical, endpoints, like survival or clinically noticeable
change of how patients feel or function, are of true interest to patients and
investigators, although these labels may be difficult or time consuming to
collect for large groups of patients. Surrogate outcomes are laboratory or
sensor measurements that are thought to be correlated with hard endpoints,
such as detection of atrial fibrillation, which is strongly associated with
stroke. However, it is well known in clinical research that successful pre-
diction of surrogate endpoints is not guaranteed to lead to better hard out-
comes, and in many cases, it can lead to worse or unintended consequences
(Mandl and Manrai, 2019; Prasad et al., 2015; Weintraub, Liischer, and
Pocock, 2015).

Cohort Selection as It Relates to Outcomes

ML research traditionally focuses on defining input features and output
labels, but for clinical applications, the population of patients for whom
data and outcomes are collected—referred to here as the cohort—is equally
significant but doesn’t always register in the input features.

ML models are more accurate when trained on data with high propor-
tions of positive labels; in clinical research this corresponds to the percentage
of enrolled patients who meet the definition of the primary outcome. While
that can be modulated by selection of the output of interest (e.g., detecting a
commonly seen surrogate outcome versus predicting a rare hard endpoint),
it is also affected by the patient population studied, or the cohort.

This effect is so pronounced that in clinical research, the cohort of
enrolled patients determines the classification of the study itself. Consider
building a model to predict the increase of a patient’s hemoglobin Alc
(label), a marker of diabetes, using consented activity and heart rate moni-
toring. If healthy patients are enrolled, the model becomes a risk biomarker
(risk of disease), but if the patients already have diabetes, it becomes a
monitoring biomarker (monitoring of known disease), and if the patient is
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on treatment, it becomes a pharmacodynamic response biomarker (predict-
ing treatment response).

From an ML perspective, these differences do not affect how a model
is constructed, trained, or evaluated. But there are significant clinical impli-
cations as to whether the model is appropriate to use for various clinical
populations. In addition to the cohort’s effect on the rate of positive labels
and clinical generalizability, the type of data collection itself may induce
selection bias into the cohort. Patients who are willing to wear, charge,
update, and maintain sensor equipment over long periods of time may not
reflect the age or socioeconomic status of a population of interest (Hicks et
al., 2019). In particular, aging populations may worry that they do not have
the competence to operate technology, that abnormal readings may induce
health anxiety, or that the technology may be used to displace in-person
monitoring and care (Sanders et al., 2012). Therefore, understanding the
cohort and possible sources of bias is a critical step before building any ML
model, especially related to aging populations.

CLINICAL STUDY CONSIDERATIONS

There are often high-level objectives for using sensor data, such as pro-
moting healthy lifestyles and healthy aging to avert the onset of preventable
diseases and enable seniors to continue living independently at home. Yet
achieving these goals with sensor data and ML requires considerations of
the clinical study nuances in addition to enrolling large cohorts of patients,
recording high-quality input data, and obtaining adjudicated outcomes
(Mohr, Zhang, and Schueller, 2017).

What Is the Right Label?

Applying ML to clinical data gathered by sensors requires consented,
discrete, measurable, and reproducible labels that may not always be pos-
sible or easy to obtain in widespread populations. Hard endpoints like
cognitive decline or death may take decades to occur, and clinical outcomes,
like diagnosis, require regular clinical assessments that are not uniformly
rigorous or applied across a population. There is a tendency to use surro-
gate endpoints related to specific sensor measurements that are known to be
correlated to health outcomes, such as blood pressure or glucose levels. It is
assumed that accurate detection or prediction of these metrics will lead to
better health, especially if the metrics are related to modifiable factors (e.g.,
exercise or better diet). However, there are multiple examples in healthcare
where successful interventions to achieve surrogate outcomes of reduced
arrhythmia burden, hypertension, and hyperglycemia, led to worse patient
outcomes, as shown below in Table 5-2.
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TABLE 5-2 Case Studies Where Surrogate Outcomes Were Misleading

Outcome

Example

Arrhythmia

Myocardial infarctions, or heart attacks, can leave a patient’s heart
vulnerable to unexpected, abnormal rhythms that manifest as sudden cardiac
death. At the end of the 20th century, pharmacologists developed
antiarrhythmic therapies that successfully suppressed these rhythms and
physicians routinely prescribed them to patients after myocardial infarctions
(Pfeffer and McMurray, 2016). In the 1980s, the Cardiac Antiarrhythmic
Suppression Trial was started to assess the safety of this practice, but
enrollment was slow because cardiologists refused to let their own patients
participate since there was clear evidence that the medications effectively
suppressed abnormal rhythms, and the link to sudden death was therefore
patently obvious (Moy¢ and Tita, 2002). The results of the completed trials
shocked the medical community: treating the abnormal rhythms was
associated with increased mortality, forcing a rapid change in the standard of
care and highlighting the dangers of using surrogate measures rather than
clinical outcomes to assess the utility and safety of interventions (Pfeffer and

McMurray, 2016).

Blood

Pressure

High blood pressure, or hypertension, is a common and leading factor of
death and cardiovascular disease, and lifestyle and pharmacologic treatments
are recommended nearly universally to hypertensive patients (Taler, 2018).

It seems obvious that drugs that reduce blood pressure should similarly lead
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to beneficial effects on mortality and heart attacks. However, in the early
2000s, a pivotal trial pitted atenolol—one of the most widely used
antihypertensives at the time—against a new medication, losartan (Dahlof et
al., 2002). Both led to similar reductions in blood pressure, but losartan was
better at preventing death and cardiovascular outcomes. In fact, a later study
revealed a deeper truth: although atenolol clearly lowered blood pressure, it
“did not result in a beneficial effect on mortality or myocardial infarction”
(Carlberg, Samuelsson, and Lindholm, 2004). This experience highlights that

an intervention of an effective surrogate outcome does not guarantee clinical

benefit.
Blood High blood sugar, one of the hallmarks of diabetes, is associated with a host
Glucose of deleterious health effects, such as risk of infection, impaired wound

healing, mitochondrial injury, oxidant injury, and more (Kavanaugh and
McCowen, 2010). In the early 2000s, these physiological effects together
with observational and clinical trial data which suggested that patients with
higher blood sugar had worse outcomes led to widespread adoption of tight
blood sugar control in intensive care units. However, subsequent studies
failed to show the benefit of tight glucose control and indeed showed higher
risk of death and significant risks to patients (Clain, Ramar, and Surani,
2015). This experience highlights that substantial observational data do not
lessen the need for rigorous evaluation of interventions to modify surrogate

measurements.
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Are Relevant Data Collected Based on the Understanding of the
Prediction Task?

Sensor data are modified by a host of factors that affect readings and
measurements in nonobvious ways. For example, a newly physically active
individual may develop a slower heart rate due to improved cardiovascular
health, or the same finding may reflect that he is newly employed and now
has health insurance to pay for a prescribed beta-blocker for migraine
prevention. Traditional clinical studies have protocols to try to discern
plausible causal factors that account for changes in outcomes. Because ML
models may discern patterns not apparent to humans, if these alternative
factors are not collected and analyzed, the model may produce spurious or
misleading predictions. Clinical research expertise that focuses on a broad
understanding of the phenomenon studied—not purely the technical details
of the sensor or ML engineering—is necessary to combat this risk.

Will Producing a Model Actually Help?

The premise of using ML to analyze personal sensor data is that knowl-
edge of what is detected, classified, or predicted will help an individual live
a better life. It is often unclear if users change behaviors in response to
recorded sensor data, or that users more likely to record sensor data in the
first place will change their behavior (McConnell et al., 2018; Patel, Asch,
and Volpp, 2015; Sperrin et al., 2016). In cases where the data induced
intended behavior change, current evidence in mobile health studies shows
only temporary, limited effectiveness for domains like improved activity
(McConnell et al., 2018). Indeed, one study showed that use of wearable
technology to assist in weight loss compared to traditional interventions led
to less weight loss (Jakicic et al., 2016), highlighting the risk that sensor
data may actually worsen outcomes through mechanisms that, in this case,
even the investigators found unclear.

This is not a small concern that can be written off as inadequate hard-
ware or software; it is a fundamental aspect of clinical experience that
accurate detection and prediction do not necessarily correspond to better
outcomes. For example, thyroid cancer screening programs in South Korea
led to a rapid increase in detection of this cancer, and nearly all patients
diagnosed were treated (Ahn, Kim, and Welch, 2014). Yet this treatment has
not led to better hard outcomes (e.g., longer survival), and treated patients
have experienced substantial complications from therapy; understanding
the difference between underdetection and overdiagnosis is critical.

In an extreme case, the video game Pokémon Go successfully motivated
increased physical activity but was sometimes followed by severe cases of
trauma due to players’ inattention to their surroundings (Barbieri et al.,
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2017). This is relevant to older adults because successful interventions to
improve activity or other surrogate outcomes for elderly patients may con-
comitantly raise unanticipated risks, such as injuries that frail individuals
may not recover well from.

Outcomes are also affected by constraints in the environment that are
nonmodifiable, such as less activity due to living in a nonwalkable city
(Sadik-Khan and Solomonow, 2017) or nonideal food choices associated
with living in a food desert (Kelli et al., 2019). In these cases, policy or
environmental changes may be more important interventions than person-
alized models.

How Predictive Is Sensor Data?

Is a continuous stream of sensor data required for an ML task?
Although the premise of sensors is that daily habits and physical activity
can substantially alter clinical outcomes, the experience from clinical trials
shows that many drugs designed to induce a physiological effect actually
have only modest treatment effects (Califf and DeMets, 2002). If lifestyle
habits are thought of as inducing potential physiological changes related to
health outcomes, then discerning the effect of each habit, especially when
multiple habits occur sequentially in various orders and combinations, is
extraordinarily difficult (Gottesman et al., 2019).

Prediction using continuous, consented measurement may not be more
accurate than traditional episodic data collection or may not have in-
cremental performance worth the burden of additional collection (Insel,
2017). Moreover, if new medical therapies or environmental changes are
introduced, predictions using data from past patients may become stale or
inaccurate.

What Are the Effects of Healthcare Disparities in Data and Machine
Learning?

Collecting and using consented data from groups that have experienced
discrimination or human and structural biases brings the attendant risk of
worsening healthcare disparities (Rajkomar et al., 2018). It is known that
healthcare outcomes are affected by social determinants of health, education,
the criminal justice system, and more (Zimmerman and Anderson, 2019).
The hope of using sensor data is that physiological or physical activity might
be used directly to forecast health, but it is impossible to disentangle the effect
of physical activity from all the other factors, especially in the face of ML.
The net effect is that investigators need to carefully consider the interplay of
healthcare disparities, collection of data, and creation of labels.
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The complexity of ML models can create a pervasive influence of dis-
parities that requires vigilance to detect. ML models can identify signals
in the data that cannot be identified by humans (Poplin et al., 2018), and
the imprints of the social determinants of health are subtly imprinted on
all types of data. For example, consider a wearable sensor that measures
a sequence of heart rates. To a human, the sequences from a device from
one manufacturer might look the same as one from another manufacturer,
but the idiosyncratic processing of the raw data can leave signatures in the
data that are invisible to the human eye but distinctly present. This means
that sensors that purport to measure the same physiological attribute may
generate sequences that reveal as much information about the device itself
as the heart rate of the patient; a model could therefore possibly distinguish
data from “expensive” versus “inexpensive” sensors and use a derived
socioeconomic indicator of wealth rather than the trends of the values
themselves for prediction. This requires clinical and research expertise to
know what to look for, and it requires data science expertise to identify
and potentially address the effect of healthcare disparities on the results
(Rajkomar et al., 2018).

In aging populations, there is especially the risk of privileged bias,
agency bias, and informed mistrust. Privileged bias refers to the phenom-
enon of aging populations not having a voice in the types of technologies
being developed that they can use or afford. As a result of privileged bias,
systems may not be designed to solve the problems facing aging popula-
tions, such as limited internet connectivity or e-literacy that limits adoption
of even interested elderly patients (Van Winkle, Carpenter, and Moscucci,
2017). Agency bias indicates a situation in which stakeholders do not
have input into types of problems that they want solved. For example,
aging populations may not be included in the decision-making process of
building and deploying the models. Informed mistrust describes a situation
where stakeholders do not trust the systems built to help them. This might
happen, for example, when researchers may be financially incentivized to
solve problems faced disproportionately by the well educated and wealthy,
introducing possibly warranted skepticism that the models are generaliz-
able. These problems are compounded by sources of bias in the data (e.g.,
nonrepresentative patients being enrolled) and the prediction of surrogate
outcomes (Obermeyer et al., 2019).

There is no single solution to solve all of these problems, but there are
recommendations on best practices to be upheld during all phases of devel-
oping ML models, including design, data collection, training, evaluation,
launch review, and postdeployment (Rajkomar et al., 2018).
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FUTURE WORK

Investigators face significant challenges in study design, data collection,
and ML-based analysis. What are some paths forward?

Large-scale studies (All of Us Research Program Investigators, 2019)
studying aging populations over long time periods will likely be a critical
source of new insights. Existing studies have shown the feasibility of enroll-
ing large numbers of patients in a short time period (Perez et al., 2019),
but obtaining verifiable longitudinal data on those participants remains
challenging both for logistical reasons and for lack of interoperability
(Rajkomar, Dean, and Kohane, 2019). Applying commercially available
sensors and tracking clinically relevant hard outcomes will likely promote
better forecasting of future health events and deterioration, but the full
cycle of trial development, analysis, and validation of these efforts may be
protracted.

However, many relevant health outcomes are largely specific to older
adults, such as the onset of frailty or progression of Parkinson disease.
Studies that enroll patients at higher risk for these outcomes might be
less generalizable to a wide population but can still provide insight for
vulnerable patients. Although using hard outcomes in large-scale studies
is preferable, thoughtfully using surrogate outcomes in smaller-scale but
high-risk cohorts can accelerate knowledge generation and direct limited
resources to run larger, expensive trials with hard outcomes. The rapid
development of new wearables means that the ability to rapidly evaluate
sensors for clinical promise is increasingly important if researchers are to
design studies that take advantage of new technologies (Kim et al., 2019).
A key insight is that identifying the specific clinical challenges, including
the relevant cohorts and outcomes, requires traditional clinical research
experience; such selection requires clinical researchers working alongside
engineers and ML experts.

Future work will need to consider the significant additional challenges
beyond detection, classification, and prediction. The critical challenge to
improve the process of aging and promoting health will be finding inter-
ventions that can ameliorate problems if they are caught in real time or in
advance (Kourtis et al., 2019).

CONCLUSIONS

Sensor data collected, with consent, from daily life promises to provide
a peek at factors that lie beyond the measurement capabilities of traditional
clinical studies that might affect health and aging. However, it is known
that health is determined by many factors, some within individual control
but many outside of it, including policy, social determinants, physical and
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environmental determinants, biology, and access to health services (Deter-
minants of Health, 2020). Moreover, while this chapter focused on key
scientific challenges, there are a plethora of other key issues of regulatory,
data security, privacy, workflow, interoperability, ethical, and legal consid-
erations (Izmailova, Wagner, and Perakslis, 2018).

There should be optimism that new technology will deepen our under-
standing of health and aging, but clinical experience cautions that the path
will be difficult and full of dead ends. It will require thoughtful application
of best practices in sensor design, ML, and clinical research to yield useful
and generalizable knowledge that helps older patients.
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Sensors in Support of Aging-in-Place:
The Good, the Bad, and
the Opportunities

Diane Cook!

ABSTRACT

Growth in wireless sensor and machine learning has reshaped the tech-
nology landscape. The maturing of these technologies is well timed, because
an aging population needs sensor-based technologies to support its increas-
ing health needs. In this chapter, we examine the state of the science in sensor
technologies and their ability to promote successful aging. We review recent
developments in sensor design and behavior marker discovery as well as
their roles in automating health assessment and intervention. In addition to
highlighting technology progress, we also discuss significant challenges that
researchers and designers are facing. The tremendous demand for sensor
solutions to adaptive aging also introduces opportunities for unprecedented
research breakthroughs. Both innovation and user needs must be considered
as we transition technologies from infancy to widespread use.

INTRODUCTION

We are experiencing a dramatic and unprecedented shift in national and
global demographics. Soon, a quarter of our population will be aged 65+,
and unique healthcare challenges will accompany this age wave. Because
people are living longer, chronic illness rates are increasing, and with
them, the number of individuals who are unable to function independently.
For the first time, older adults will outnumber children, creating a discrep-

'Washington State University.

105

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/25878

Mobile Technology for Adaptive Aging: Proceedings of a Workshop

106 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

ancy between persons needing care and those capable of providing it [1].
While the future of healthcare availability and service quality seems uncer-
tain, the future of healthcare IT is bright, with a projected market growth
to $391 billion by 2021 [2].

Technology holds a promise to meet some of the coming age wave needs
by automating and dramatically scaling health assessment and treatment.
This promise is reflected in research and business interest. As Figure 6-1
illustrates, research activity and market activity related to sensor technol-
ogy for healthcare have both been steadily growing over the past decade.
Because 90% of seniors want to stay in their own homes as they age [3],
many look to technology to extend functional independence and improve
quality of life. There are many potential benefits of sensor-based technology
for promoting successful aging in place. Rather than calling Mom several
times a day to check in, family members can discretely view a display that
reassures them she is up and carrying about her daily business. Instead of
seeing a patient for 30 minutes, care providers can create diagnosis and
treatment plans based on a complete behavioral profile generated from
continuous monitoring over the previous year. Older adults do not need to
worry about taking the right medications in the correct context when smart
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FIGURE 6-1 (bars) Number of publications, by year, for sensor-related healthcare topics over
the past decade. Numbers are reported by Google Scholar; (line) Size of the global Internet of
Things (IoT) market. Numbers are reported by Statista.
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pill dispensers offer timely reminders. Furthermore, they can rest assured
that assistance is on its way if a fall or other accident does happen.

To exploit the promise of aging-in-place support that is offered by
smart sensor platforms, we need to determine what progress has been made
in this field and what are essential next steps. In this chapter, we look at the
state of the science in smart sensor-based health monitoring, assessment,
and intervention for aging in place. We start by comparing the capabilities
of popular sensor platforms and types of information that can be gleaned
from these sensors. Based on this starting point, we then investigate the
variety and maturity of sensor-based technologies that have been developed
for adaptive aging. Finally, we discuss barriers and opportunities that arise
as we move this field forward.

SENSORS AND BEHAVIOR MARKERS

Sensors provide information on a vast variety of physiological and be-
havioral features. In recent years these sensors have become low cost, wire-
less, integrated into larger packages, and deployable in real-world settings.
Sensors differ in type, purpose, output signal, and technical infrastructure.
Table 6-1 lists sensors that are commonly used for ubiquitous healthcare
because they provide moment-by-moment human behavior markers, in situ.
Here, we discuss the potential use cases for sensor data as well as the pros
and cons for alternative sensor types.

TABLE 6-1 Common Types of Sensors Employed for Health Monitoring and Assistance

Category Sensors

Ambient passive infrared (PIR) motion, magnet / contact switch, temperature, light, humidity,

vibration, pressure, power usage, electric device usage, water usage, RFID

Wearable accelerometer, gyroscope, magnetometer, compass, phone, text, app, battery, location

Environment | frequented locations with type, outdoor walkability score, indoor and outdoor air

quality, temperature, light levels, sound levels, number of residents, environment clutter

Physiological | ECG, EEG, EMG, BCG, respiration, pulse, galvanic skin response, skin temperature,

cortisol level, blood pressure, blood oxygen saturation

High- camera, depth sensor, thermal sensor, radar, microphone array

dimensional

Digital traces | web browser, purchases, social media

Copyright National Academy of Sciences. All rights reserved.



http://www.nap.edu/25878

Mobile Technology for Adaptive Aging: Proceedings of a Workshop

108 MOBILE TECHNOLOGY FOR ADAPTIVE AGING

Ambient sensors are attached to a physical environment. These sensors
passively provide data [4]. Thus, individuals do not need to interact with
the sensor or change their behavior in any manner. Because they are not
associated with a single person, these sensors generate data that reflect the
actions of everyone in the space together with external environmental influ-
ences. While these sensors are inexpensive and do not quickly drain their
batteries, the information they provide is often coarse in granularity. As a
result, sophisticated software is required to understand behavior patterns
and health states from these data.

In contrast with ambient sensors, wearable sensors both require much
more user attention and provide a much larger data set. Individuals who
collect data from mobile phones, smartwatches, or other wearable sensors
need to consider proper sensor placement [5]. These sensors must be fre-
quently charged because the battery drains quickly, especially if collected
information is communicated offsite or location services are employed [6].
On the other hand, mobile devices offer a compact mechanism for bun-
dling many sensors together. Frequently, these devices either directly collect
physiological information or offer attachments that monitor these read-
ings. These sensors provide personalized information in large volumes that
offer tremendous insight into movement and behavior patterns. Consider
a smartwatch that collects sensor readings at a rate of S0Hz. This device
will generate over 4 million readings each day. While the resulting data are
a treasure trove for data analysis, they quickly exceed the storage capacity
of a mobile device.

Other input devices that provide high-granularity data are cameras and
microphone arrays. These sources offer perhaps the richest information
and attract a great deal of research on activity recognition and analysis [7].
Video and audio data are valuable for fall detection and automated fall risk
assessment, speech-based health assistance, and analysis of group activities
[8], and the corresponding methods usually require a large dataset to train
a classifier and are inclined to be influenced by the image quality. However,
it is hard to collect fall data, and instead simulated falls are recorded to
construct the training dataset, which is restricted to limited quantity. To
address these problems, a three-dimensional convolutional neural network
(3-D CNN) was created. At the same time, they pose some of the most sig-
nificant challenges. These data are so voluminous that they prevent on-site
storage and real-time analysis. They are sensitive to environmental factors,
because lighting and ambient sound conditions can obscure the informa-
tion. Perhaps most dauntingly, the perceived (or actual) privacy risk thwarts
user acceptance of the technology, particularly in their own home [9], [10].
An unlimited number of external information sources can also be analyzed
to understand a person’s health state and behavior patterns. People leave
digital traces when they use the Internet to browse, shop, and tweet. The
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digital exhaust contributes to creating personal behavior markers. Due to
the computational and privacy hurdles faced by these information sources,
we restrict our state-of-the-science focus to the role of ambient and wear-
able sensors in health monitoring and assistance, particularly for older
adults.

From raw sensor data, digital behavior markers can be gleaned. Map-
ping raw data onto health scores and identifying emergencies from raw
data are extremely difficult. More often, features are extracted based on
expert design or through automated feature learning methods such as
autoencoders, independent component analysis, and clustering [11], [12].
Over the last few years, researchers have made great strides in identifying
and validating these digital phenotypes [13]. Table 6-2 summarizes some
of these phenotypes, or behavioral markers, that are particularly relevant
for monitoring and assisting older adults.

TABLE 6-2 Behavioral Markers that Are Extracted from Sensor Data

Category Features

Mobility step count, walking speed, step length, daily distance covered, number and duration

of times in one spot, number walking bouts, activity level

Exercise number, duration, movement types, intensity, location

Sleep number and duration of daily sleep bouts, sleep times, sleep locations, sleep

fitfulness, sleep interruptions, sleep apnea

Activity number, duration, and location of basic and instrumental activities of daily living

Environment frequented locations with type, outdoor walkability score, indoor and outdoor air

quality, temperature, light levels, sound levels, number of residents, environment

clutter
Devices types of device interactions, medication frequency, use of compensatory devices
Socialization number and duration of incoming/outgoing phone calls, text messages, missed

calls, address book, calendar, time out of home, number and duration of visitors,

activity before and after calls

Circadian and complexity of daily routine, number of daily activities, minimum and maximum
diurnal rhythm inactivity times, daily variance in activity and mobility parameters, periodogram-

derived circadian rhythm
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Perhaps the most prevalent behavior metric is movement type and
intensity. An accumulating body of research indicates that engaging in
preventive health brain-aging behaviors may slow cognitive and physical
decline as well as promote brain neuroplasticity [14], [15]. Furthermore, an
estimated 10-25% improvement in modifiable risk factors could prevent up
to 3 million cases of Alzheimer’s disease worldwide [16]. At the forefront
of these healthy behaviors is exercise, which demonstrably improves cogni-
tion and mood while slowing signs of aging [17], [18]. In the home, motion
sensors trigger a reading when movement is sensed in their field of view.
Software estimates mobility levels and walking speed by tracking motion
from one sensor to the next. On a mobile device, accelerometers quantify
changes in speed and even support gait cycle estimation. Based on this
information, walking speed, duration, and step counts can be estimated.
Although these sensors can be fooled by other types of movements [19],
they provide a baseline of movement behavior against which each person
can measure changes.

Sleep is also a strong indicator of health in older adults [20]. Not only
does poor sleep correlate with many adverse health outcomes, but sleep
quality itself is an indicator of aging and health and provides predictors of
health status change [21]. Ambient and motion sensors, together with spe-
cialized bed sensors, provide a host of sleep quality indicators. Total sleep
time, sleep efficiency, and deep sleep can be sensed from movement and
respiration. When location information is added, unusual sleep locations
(e.g., in a living room chair rather than in bed) can be detected.

One of the most common features that is learned from sensor data is an
activity label. Activities provide a vocabulary to express human behavior.
Human activity recognition is a popular research topic [22]-[25]. Although
much of the current work uses sensors to recognize activities in scripted
settings, the same methods can be refined to label activities as they occur.
Wearable sensors have traditionally been employed to recognize movement-
based activities (e.g., sit, stand, walk, climb, lie down), while ambient sen-
sors typically label basic and instrumental activities of daily living (e.g.,
work, exercise, relax, cook, eat, entertain, sleep). Once these labels are
generated, information about the timing, regularity, location, and duration
of routine activities can be incorporated into a personalized phenotype.

When additional sources of information are added to the mix, the
number of behavior features that can be extracted is virtually unbounded.
Sensors can now determine the use of water and electrical devices, monitor
medication access, and detect interaction with items that offer compensa-
tory aid [26]-[28]. Online sources can be tapped to assess the air quality,
temperature, and walkability of a geographic area. Similarly, a person’s
computer usage leaves traces that indicate socialization habits. A vital be-
havior marker that confounds researchers is nutrition monitoring. While
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researchers have succeeded in detecting eating movements [29], they typi-
cally require users to specify the type of food being consumed, which results
in a decline in technology use over time [30].

All of these behavior markers represent one level of information on
top of raw sensor data. On their own, the markers have been linked with
health indicators and can be used to automate prevention and treatment
plans. However, the markers are most effective when they are examined in
combination and over time. The amount of time that is spent outside the
home by itself may not provide an indicator of health, social anxiety, or
loneliness, but day-to-day variability and trends paint a more vivid picture
[31]. Similarly, automatically identifying circadian and diurnal rhythms
[32], [33] is essential for all of the behavior markers by themselves and in
combination.

AUTOMATED ASSESSMENT

One particular need that technology can help address is the need to
assess a person’s health and functional performance. Assessing the ability
of an individual’s physical state and their ability to be functionally indepen-
dent supports family planning, creation of an appropriate treatment plan,
and evaluation of intervention strategies. Technology offers many potential
improvements to assessment Because many technology-based tests can be
administered without a clinician present, they can be utilized by people
living in rural settings without imposing time and location constraints
[34]. Performing assessments in a patient’s everyday environment is more
representative of the person’s capabilities [35]. Additionally, collected sen-
sor data can identify novel correlations that were unanticipated but are
meaningful. As Figure 6-2 illustrates, automated assessment relies on large
sensor data and corresponding behavior markers. Here, we review recent
studies and findings that automate assessment of factors contributing to
aging in place, including motor functioning, cognition, mood, and func-
tional independence.
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FIGURE 6-2 The sensor-based process to support adaptive aging. Sensors generate readings,
from which behavior markers are extracted. Machine learning techniques map behavior
markers onto assessment categories, which form a basis for automated intervention.
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Motor function. Throughout the field, wearable sensors are typically
used to analyze ambulation and gestures. Thus, they naturally support
motor function assessment. A key aspect of motor function is gait, and
sensors placed within shoes pick up on multiple elements of gait, including
walking patterns and stride [36], [37]. Researchers have used these patterns
to diagnose movement-related conditions, including insensible feet, Parkin-
son’s disease, Huntington’s disease, amyotrophic lateral sclerosis, peripheral
neuropathy, frailty, diabetic feet, injury recovery, and fall risk [38], [39].
In addition to analyzing movement patterns, these sensor technologies can
also detect wandering and learn behavior precursors [40] and monitor time/
distance traveled outside the home during rehabilitation [41]. Such motor
function can be assessed by ambient sensors in addition to wearable sen-
sors. As an example, Newland et al. found a predictive relationship between
ambient sensor-detected gait parameters and multiple sclerosis symptoms.

Mood. Because sensors can be seamlessly woven into everyday life,
they support timely assessment in ecologically valid settings. Moods can
change quickly, and at unexpected times, so they need to be detected in the
moment. Researchers have successfully identified mood at smaller sample
sizes. For example, Boukhecbha et al. [31] predicted social anxiety based
on visited location types as well as fine-grained behavior features that
were extracted before and after texting and phone conversations. Simi-
larly, Quiroz et al. [42], as well as Mehrotra and Musolesi [43] inferred
emotion from movement and heart rate data. Quiroz, et al. were able to
predict happy, sad, or neutral states using accelerometer data. Mehrotra
and Musolesi inferred levels of activeness, happiness, and stress, each on a
Likert 1 through 5 scale. Instead of analyzing accelerometer readings, these
researchers collected GPS data and extracted markers, such as number and
duration of places visited throughout the day, to output predictions. Using
ambient sensors, Aicha et al. [44] and Austin et al. [45] found a correlation
between self-reported feelings of loneliness and sensor-detected minimal
socialization. Similarly, Galambos et al. found that overall activity level
patterns together with detection of time out of home were predictors of
clinical scores for dementia and depression [46].

Cognition. Researchers have hypothesized that changes in cognition
correlate with behavior changes. With the maturing of sensor technology,
we now can validate the hypothesis and automate assessment and analysis
of cognitive function. Because assessment tests designed with ecological
validity are more effective than laboratory tests at predicting everyday func-
tioning, researchers have designed studies to link behavior and cognition in
home settings. Initially, many of these studies were performed in a simulated
home environment with scripted activities, yet significant correlation was
found with traditional neuropsychological test scores [47]-[49]. Deglutition
and yawning help identify fine-grained physiological symptoms and chronic
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psychological conditions, which are not directly observable from traditional
daily activities. We propose a new wearable smart earring that is capable
of differentiating Investigator’s Global Assessment (IGA) in the daily envi-
ronment with single integrated accelerometer sensor signal processing.
Our prior framework, GetSmart, shows significant improvement in IGAs
recognition based on the smart earring, which necessitates users to replace
the earring batteries frequently due to its energy requirement (high sampling
frequency). More recently, study participants were allowed to perform their
typical uninterrupted routines at home while sensors monitored their be-
havior. Behavior parameters over time were found to correlate with diverse
health parameters, including fall risk, functional performance, cognitive
function, motor function, and dyskinesia “on” states. Cook et al. vali-
dated their technology for 84 older adults, although the study was based
on scripted activities [48], but republication/redistribution requires IEEE
permission. One of the many services that intelligent systems can provide
is the ability to analyze the impact of different medical conditions on daily
behavior. In this study, we use smart home and wearable sensors to collect
data, while (n = 84) other groups have tested these methods in actual homes
over multiple months. While the sample size is often limited to 1-2 homes
[50]-[52], long-term monitoring has been successfully performed in assisted
living settings [53]. Traditional assessment scores have occasionally been
predicted from behavioral markers observed over months or years [54],
[55]. We examine the actual benefits of smart home-based analysis by
monitoring daily behavior in the home and predicting clinical scores of
the residents. To accomplish this goal, we propose a clinical assessment
using activity behavior (CAAB). In many of these cases, walking speed and
activity regularity were reliable indicators of cognitive health. However,
Hellmers et al. [56] and Akl et al. [57] found that time spent in areas of
the home and daily variation in room occupancy were strong predictors of
mild cognitive impairment. Similarly, Petersen et al. [58] discovered a link
between time out of the home and cognitive health.

Functional independence. Very few efforts have been made thus far
to automate functional performance assessment in everyday settings using
sensor technology. Validating functional performance is challenging. In
partnership with an occupational therapist, Robben et al. [59] were able
to link daily variability in room occupancy with Assessment of Motor and
Process Skills and Katz Index of Independence in Activities of Daily Living
scores. However, automated detection of compensatory use has not yet
been explored. Similarly, automatic scoring of a person’s activities based
on sensor-observed consistency, efficiency, and completeness has not yet
been designed.
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PREVENTION AND INTERVENTION

Sensor technology is better suited to observing behavior and health
state than to taking preventive or therapeutic actions. However, key in-
tervention technologies have been designed using captured sensor data.
Because sensors can detect activities such as taking medications, a natu-
ral intervention is to issue prompts (via a mobile device) for medication
adherence. Sensor-driven automated prompts are ideal because they are
less reliant on patients to program reminder times and contents, reduc-
ing user burden and increasing technology adoption. Additionally, studies
have shown that prompting individuals based on context is more effective
than timing-based prompts [60]. Clearly, a prompt to take medication at
a person’s standard dinner time of 6:30 pm will be unsuccessful if dinner
is delayed until 7:00 pm. Similarly, if the person is away from the medica-
tion dispenser or busy with an unrelated activity, the prompt may not even
be heard, let alone be productive. The link between recognizing activity
context and providing timely reminders was further investigated by Minor
et al. [61]. Their app forecasted the next expected time for a key activity
(e.g., take medicine), then issued a prompt if the activity was not initiated
at the predicted time.

Not only can sensor data inform intervention design, but they can also
provide a valuable means to understand treatment adherence. As an exam-
ple, Fallahzadeh et al. [62] captured sensor-derived contextual descriptions
of instances when subjects followed a medication regimen and when they
skipped a treatment dose. They found, for example, that individuals who
linked their medication schedule with another routine activity (e.g., waking
up, dinner) had higher adherence rates. These findings can help validate inter-
vention theories and automate prompt timings for automated interventions.

While prompts represent a primary sensor-driven intervention in cur-
rent technologies, a few investigations have considered additional auto-
mated assistance for older adults. One example is automatically contacting
a care provider if a health event or significant anomaly is detected. While
anomaly detection from sensor data is a heavily studied topic [63], detec-
tion of primarily irrelevant abnormalities is quite common. In the case
of smart home data, anomalies can be reported due to sensor noise, an
unexpected visitor, or a power outage. If the care provider receives too
many alerts, they will be ignored. A recent project uses a clinician-in-the-
loop approach to address this issue [64]. By providing a small number of
clinically relevant anomaly examples, this algorithm found a much higher
percentage of anomalies that were related to health events, such as falls,
nocturia, depression, and weakness.

One area that has not received much investigation is home automation
assistance. Some researchers have automated smart homes based on antici-
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pated actions and needs [65], [66]. However, these capabilities have not
been tested for usability by older adults. Given the observation that older
adults are enjoying assistants such as Alexa and Google Home, and are
learning to use these devices faster than in the past [67], this is an oppor-
tunity that can be explored by researchers and entrepreneurs.

BARRIERS AND OPPORTUNITIES

There has been a flurry of activity in the space of pervasive com-
puting and machine learning—driven analysis of human behavior data.
These advances set the stage for tremendous technological support of aging
in place. However, there are still significant challenges that need to be
addressed before the promise becomes a reality. Primary barriers to wide-
spread use include study reproducibility, technology scaling, user privacy,
and technology adoption. While there are significant hurdles to overcome
in these areas, the challenges also present rich opportunities for researchers
to tackle fascinating problems.

Scale and Reproducibility

Many breakthroughs have been made in health-assistive technologies.
However, most sensor-based health monitoring and assistance studies have
not focused on result reproducibility or generalizability. Engineering fields
focus primarily on innovation. Devoting time and resources to designing
new technology diverts them away from ensuring study reproducibility. In
the assessment and intervention studies we reviewed, the median sample
size was 17 subjects. Additionally, only a handful of studies collected data
continuously for multiple days, let alone months or years. While some
researchers focus on particular population groups, the vast majority of
studies use a convenience sample. Including diverse populations has not
been a priority when showing “proof of concept” for a new technology.
However, this step is critical to ensure that these important technologies
are usable and achieve reliable results for all older adults. Large, diverse
populations are also needed to address issues of bias and fairness when
training machine learning models [68].

Admittedly, difficulties in validating sensor-driven healthcare thwart
attempts at scalability and reproducibility. First, ground truth is frequently
inaccessible and erroneous. Whether the technology is generating value for
activity, behavior markers, or health state, accurate labels are necessary to
validate the technology. However, while sensor data can observe humans
continuously, clinicians cannot. Traditionally, self-reporting is gathered
when clinician data are unavailable. However, these are often error prone
because the retrospective details of past experiences and health states can-
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not be consistently recalled. Recent work in designing apps for ecological
momentary assessment (EMA), or experience sampling, can help by col-
lecting information on health events, current activities, and self-reported
functioning “in the moment” [69], [70].

Second, sensor-driven health technologies are a sophisticated assortment
of components, each of which represents a new, dynamic breakthrough.
Each part introduces a potential for failure and thus must be validated
separately. As a result, many technologies are tested in a laboratory or
heavily controlled setting, rather than “in the wild.” Using sensor technolo-
gies in actual deployments requires handling issues including sensor noise,
missing data, and system failure. If data are available, then they need to be
preprocessed to filter patterns of interest. Even if clean and segmented data
are available, researchers have to contend with one of the most complex,
dynamic types of processes: human behavior and its relationship to health.
Problems with any one of these steps can propagate error downstream and
jeopardize the reliability of the assistive technology. For this reason, many
commercially available packages perform a subset of the pieces described
in this chapter. Furthermore, commercial products are often driven by
expert-crafted rules, to ensure their consistency and trustworthiness. Novel,
machine learning—driven methods will need to be scaled and validated before
they can be safely transferred to the marketplace.

Third, sensor-driven healthcare needs to scale to multiple types of sen-
sors, data sources, and population demographics. Researchers have found
that there is no single “silver bullet” sensor source that provides all of the
necessary insight to a person’s health and functional independence. As
a result, methods including data fusion [71], transfer learning [72], and
domain adaptation [73] will be essential. Using these procedures, sensors
in a smart home can “train” a smartwatch on how to recognize classes of
behaviors. Once the individual leaves home, the smartwatch can continue
observing behavior where the home left off and can update the home’s
models when it returns. The house can then take up the task while the
watch is charging. Similarly, these algorithmic methods can assist in adapt-
ing data and learned models to new devices, new behavior categories, and
new population groups.

Privacy and Security

Because data acquisition and analysis form the backbone of sensor-
supported aging in place, older adults’ privacy now increasingly depends
on the ability to keep others from extracting or inferring sensitive informa-
tion from data. Companies are eager to obtain medical information. Some
employers dispense rewards or penalties based on fitness data; others assess
consumers’ health risks to increase insurance rates.
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Most older adults doubt that their personal information is being kept
private and feel that online safety is low [67]. These worries are warranted.
Even after data are scrubbed of obvious identifying markers, observed
behavior data are still linked to an individual, that person’s medical data,
and a host of other sensitive information. Maintaining anonymity has
typically consisted of removing key identifiers, such as a person’s name,
address, Social Security number, and other unique identifiers. However, the
recent proliferation of high-dimensional datasets introduces the possibility
of piecing together a person’s complete profile from seemingly disparate and
anonymized pieces of information [74]. This ability has been confirmed by
several projects in which sensitive medical data were identified from seem-
ingly obscure pieces of information [75], [76]. Thirty-three of the states
that know those details do not keep the information to themselves or limit
their sharing to researchers [1]. Instead, they give away or sell a version
of this information, and often they’re legally required to do so. The states
turn to you as a computer scientist, IT specialist, policy expert, consul-
tant, or privacy officer and ask, are the data anonymous? Can anyone be
identified? Chances are you have no idea whether real-world risks exist.
Here is how I matched patient names to publicly available health data
sold by Washington State, and how the state responded. Doing this kind
of experiment helps improve data-sharing practices, reduce privacy risks,
and encourage the development of better technological solutions. Results
summary: The State of Washington sells a patient-level health dataset for
$50. This publicly available dataset contained virtually all hospitalizations
occurring in the state in a given year, including patient demographics, diag-
noses, procedures, attending physician, hospital, a summary of charges, and
how the bill was paid. It did not contain patient names or addresses (only
five-digit zip codes).

The risk of reidentification is heightened when collected informa-
tion is linked to ubiquitous, location-tracking mobile devices [77]. Last
year, analysts found that a commercial fitness app led to the revelation of
remote military outpost locations [78]. De Montjoye et al. [77] found that
location data do not need to be continuous and fine-grained to perform
reidentification. They theoretically determined that four spatiotemporal
points are enough to uniquely identify 95% of the population. Mobility
traces were deemed unique even at 1/10 of the available resolution, high-
lighting the fact that coarse granularity will not protect anonymity.

Even without explicit location information, sensitive features can
be reidentified. Wu et al. [79] found that we can train deep networks to
recognize the most discriminative changes of gait patterns, which sug-
gest the change of human identity. To the best of our knowledge, this is
the first work based on deep CNNs for gait recognition in the literature.
Here, we provide an extensive empirical evaluation in terms of various
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scenarios, namely, cross-view and cross-walking-condition, with different
preprocessing approaches and network architectures. The method is first
evaluated on the challenging CASIA-B dataset in terms of cross-view gait
recognition. Experimental results show that it outperforms the previous
state-of-the-art methods by a significant margin. In particular, our method
shows advantages when the cross-view angle is large (i.e., no less than 36
degrees). And the average recognition rate can reach 94%, much better
than the previous best result (less than 65% achieved a human identifica-
tion rate of 98% from gait data for 4,007 subjects). Similarly, Na et al.
[80] analyzed accelerometer data collected during walking periods for
seven days as part of the National Health and Nutrition Examination
Survey (NHANES). These researchers used random forest and support
vector machine learning algorithms to reidentify demographic and physi-
cal activity data for 14,451 subjects. Rocher et al. [81] further challenge
the release-and-forget approach to anonymizing and sharing datasets.
Based on an analysis of populations within five publicly available data
sets, they determine that 99.98% of Americans could be reidentified using
15 demographic attributes.

Fortunately, the increasing awareness of digital exposure has sparked
a similar rise in research to maintain the privacy of sensitive information.
Privacy-preserving data-mining methods are being proposed to combat the
corresponding expansion of data-exploitation methods [82]. Instead of
releasing collected data, for example, synthetic data can be released that
exhibits the same properties as collected data but obfuscates features of any
one person [73], [83], [84]. Further developing and utilizing these methods
can help overcome the dangers associated with collecting sensor data for
health assistance.

Technology Adoption

Once technology is robust and secure, an important final step is for
older adults to embrace it. Although privacy, discussed in the previous sec-
tion, could be a concern for some, Demiris et al. found that many older
adults are still often welcoming of sensors in their homes, particularly when
the technology provides assurance of health and safety monitoring [85].
Again, several factors must thus be considered to improve technology adop-
tion for this demographic. One factor is the cost of technology. In 2017,
the reported median annual income for older adults in the US was $24,224
[86]. This income is far less than the amount that most need to meet with
their day-to-day living expenses, particularly since annual healthcare costs
for individuals with chronic conditions are up to $13,230. As a result,
expensive smartwatches or smart homes will not be a high-priority expen-
diture. Unless external agencies support sensor technology costs or prices

Copyright National Academy of Sciences. All rights reserved.


http://www.nap.edu/25878

Mobile Technology for Adaptive Aging: Proceedings of a Workshop

SENSORS IN SUPPORT OF AGING-IN-PLACE 119

are dramatically reduced, the demographic that needs the support the most
will be the least likely to be able to purchase it.

A second factor is addressing the desire for older adults to utilize health-
assistive technology. While older adults realize that health and wellness
technology should be of significant interest, they prefer to invest time and
resources on technology that entertains, connects, and informs. Most older
adults feel that sensor-based technologies are novelties [87]. They shy away
from such mechanisms unless they are singled out by their physician or a
family member as needing something to monitor them. At that point, being
surrounded by such technology heightens awareness of their health status.
As a result, health-related technology often elicits a negative response, while
communication technology gets a positive response. Technology developers
can be sensitive to this perspective. Sensor technology can serve dual pur-
poses. In addition to monitoring activities, it can provide news coverage,
connect older adults with friends, and entertain. Assistive technology should
look stylish. It should also allow seniors to bring new capabilities into their
home (e.g., control ambient music through voice commands, turn on lights
when someone walks at night) as well as protect their well-being.

Finally, researchers must ensure that sensor-based health technology
is safe and straightforward to use. Many health-assistive apps require user
effort to set up alerts and keep logs [88]. Additionally, individuals with cog-
nitive limitations will require extended teaching time, and use of technolo-
gies may be forgotten if not habituated [89], [90]. Technology must take
advantage of participatory design, in which feedback from older adults and
care providers informs each step of the design process. Software interfaces
and assistive devices need to include contrasting colors and large fonts, as
well as consider communication difficulties due to hearing loss, when sup-
porting older adults [91]. Through partnership with end-users, researchers
can create sensor systems that will support, not undermine, health and
functional independence [92]. By additionally creating machine learning
models that are interpretable, users will be more accepting of technology.
At the same time, clinicians will be informed about insights that can shape
their own practices.

CONCLUSIONS

Sensors and machine learning together provide essential tools that can
revolutionize aging in place. Ubiquitous ambient and mobile sensors collect
large amounts of continuous data. By processing these data, machine learning
techniques extract behavioral markers and map behavior features to clinical
assessment scores, providing automated assessment of physical, mental, and
emotional health. Additionally, these insights provide a basis for designing
interventions that support older adults and their functional independence.
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Sensor-based methods are becoming increasingly reliable for unobtru-
sively monitoring behavior and measuring human factors that are related to
cognitive and physical health status. Despite plentiful success stories, how-
ever, there still remain numerous challenges to face in providing technology
strategies for adaptive aging. Technology changes quickly, but health-assistive
hardware and software need to be validated on large, diverse populations
to ensure their reliability. Because these sensor data reflect daily lives, col-
lecting and analyzing them in the cloud can introduce privacy and security
risks. Even once these issues are addressed, systems must be appealing and
usable by older adults for the technologies to be adopted. By addressing these
remaining issues now, the technology will be ready to support our aging
population when help is most needed.
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Appendix A

Workshop Agenda

December 11-12, 2019

Keck Center of the National Academies
500 Fifth Street, NW, Room 103

Washington, DC 20001

WEDNESDAY, DECEMBER 11, 2019

9:45 am - 9:55 am

9:55 am - 10:00 am

10:00 am — 10:15 am

10:15 am - 11:15 am

11:15 am - 11:30 am

11:30 am — 12:30 pm

Welcome and Introduction to the National
Academy of Sciences
Adrienne Stith Butler, Board on Behavioral,
Cognitive, and Sensory Sciences

Committee Welcome and Introductions
Shelia Cotten, Michigan State University,
Steering Committee Chair

Sponsor Perspectives
Jonathan King, National Institute on Aging
Dana Plude, National Institute on Aging

Paper on Ethics, Trust, and Privacy Issues in

Mobile Technologies & Committee Discussion
Jessica Vitak, University of Maryland

Break

Paper on Social Connectedness and the Potential

for Mobile Technologies & Committee Discussion
Karen Fingerman, University of Texas at Austin
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12:30 pm - 1:30 pm LUNCH BREAK

1:30 pm — 2:30 pm Paper on Use of Mobile and Sensor Technologies
for Aging in Place & Committee Discussion
Diane Cook, Washington State University
(virtual)

2:30 pm — 2:45 pm Break

2:45 pm — 3:45 pm Paper on Use and Limitations of Mobile
Technologies for Interventions & Committee
Discussion
Neil Charness, Florida State University

3:45 pm - 4:00 pm Closing Comments
Shelia Cotten, Michigan State University,
Steering Committee Chair

4:00 pm Adjourn, Day One

THURSDAY, DECEMBER 12, 2019

10:00 am — 10:15 am  Recap of Workshop Day 1
Shelia Cotten, Michigan State University,
Steering Committee Chair

10:15 am — 11:15 am  Paper on Gathering Data with Sensors and
Mobile Technologies & Committee Discussion
Elizabeth Murnane, Dartmouth College

11:15 am — 11:30 am  Break

11:30 am — 12:30 pm  Paper on Using Mobile Technologies and Al/
Machine Learning for Prediction & Committee
Discussion
Alvin Rajkomar, University of California,
San Francisco

12:30 pm — 1:30 pm  LUNCH BREAK
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1:30 pm - 3:30 pm

3:30 pm — 3:45 pm

3:45 pm
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Discussion: Industry Perspective on Mobile
Technology for Adaptive Aging
Iim Harper, Co-founder and Chief Operating
Officer at Sonde Health, Inc.
Scott Moody, Co-founder, CEO, and Chief
Member Advocate, K4Connect
Kyle Rakow, Vice President and National
Director, AARP Driver Safety

Closing Comments
Shelia Cotten, Michigan State University,

Steering Committee Chair

Adjourn Workshop
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Appendix B
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